【题目】在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).
(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.
(2)此时平移的距离是 ;
(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.
![]()
科目:初中数学 来源: 题型:
【题目】已知在纸面上有一数轴(如图1),折叠纸面.
(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 表示的点重合;
(2)若﹣2表示的点与8表示的点重合,回答以下问题:
①16表示的点与 表示的点重合;
②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是 、 .
(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数
的顶点为点D.
(1)求点D的坐标(用含m的代数式表示);
(2)求函数
的图象与x轴的交点坐标;
(3)若函数
的图象在直线y=m的上方,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,⊙O过正方形ABCD的顶点A、D且与边BC相切于点E,分别交AB、DC于点M、N.动点P在⊙O或正方形ABCD的边上以每秒一个单位的速度做连续匀速运动.设运动的时间为x,圆心O与P点的距离为y,图2记录了一段时间里y与x的函数关系,在这段时间里P点的运动路径为( )
![]()
A. 从D点出发,沿弧DA→弧AM→线段BM→线段BC
B. 从B点出发,沿线段BC→线段CN→弧ND→弧DA
C. 从A点出发,沿弧AM→线段BM→线段BC→线段CN
D. 从C点出发,沿线段CN→弧ND→弧DA→线段AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校组织部分学参加安全知识竞赛,并将成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是4%,12%,40%,28%,第五组的频数是8.则:①参加本次竞赛的学生共有100人;②第五组的百分比为16%;③成绩在70-80分的人数最多;④80分以上的学生有14名;其中正确的个数有( )
![]()
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.
(1)求证:△ACD≌△CBF;
(2)AD与CF的关系是 ;
(3)求证:△ACF是等腰三角形;
(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰△ABC中,AB=AC,将线段BA绕点B顺时针旋转到BD,使BD⊥AC于H,连结AD并延长交BC的延长线于点P.
(1)依题意补全图形;
(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);
(3)小明作了点D关于直线BC的对称点点E,从而用等式表示线段DP与BC之间的数量关系.请你用小明的思路补全图形并证明线段DP与BC之间的数量关系.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,函数
的图像与函数
(
)的图像相交于点
,并与
轴交于点
.点
是线段
上一点,
与
的面积比为3:7.
![]()
(1)
_____,
_____.
(2)求点
的坐标;
(3)若将
绕点
逆时针旋转,得到
,其中点
落在
轴负半轴上,判断点
是否落在函数
(
)的图像上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】推理填空:如图,点
在
的一边
上,过点
的直线
平行直线
,
平分
,
于点
.
(1)求证:
平分
;
(2)当
为多少度时,
平分
,并说明理由。
![]()
(1)证明:∵
(已知)
∴
(垂直定义)
即![]()
又∵
(平角定义)
∴
,
∵
平分
,
∴
(角平分线定义)
∴
(_____________________)
即
平分
;
(2)解:
时,
平分
,理由如下:
∵
,
∴
(____________________________),
∴
_________________°
又∵
平分
,
∴
°,
∴
(等量代换)
即
平分
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com