精英家教网 > 初中数学 > 题目详情
1、图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长?
分析:根据AD和每层楼的高度,易求得AE、GH的长,关键是求出CG的值.根据三角形的外角性质,易证得△ABC是等腰△,则BC=AB=EF=16m.在Rt△CBG中,已知∠CBG的度数,通过解直角三角形求出CG的长,由此得解.
解答:解:根据题意,得DE=3.5×16=56m,AB=EF=16m.
∵∠ACB=∠CBG-∠CAB=15°,
∴∠ACB=∠CAB,
∴CB=AB=16m.
∴CG=BC•sin30°=8m,
CH=CG+HG=CG+DE+AD=8+56+5=69(m).
故塔吊的高CH为69米.
点评:此题主要考查的是解直角三角形的应用,能够发现△ABC是等腰三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:第7章《锐角三角函数》中考题集(34):7.6 锐角三角函数的简单应用(解析版) 题型:解答题

图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长?

查看答案和解析>>

科目:初中数学 来源:第28章《锐角三角函数》中考题集(33):28.2 解直角三角形(解析版) 题型:解答题

图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长?

查看答案和解析>>

科目:初中数学 来源:第1章《解直角三角形》中考题集(28):1.5 解直角三角形的应用(解析版) 题型:解答题

图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长?

查看答案和解析>>

科目:初中数学 来源:第31章《锐角三角函数》中考题集(29):31.3 锐角三角函数的应用(解析版) 题型:解答题

图1为已建设封项的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长?

查看答案和解析>>

同步练习册答案