精英家教网 > 初中数学 > 题目详情
(1)已知x+
1
x
=3,求
x2
x4+3x2+1
的值;
(2)已知关于x的一元二次方程x2-x+1-a=0有两个不相等的正根,求a的取值范围.
分析:(1)代数式
x4+3x2+1
x2
=x2+3+
1
x2
=(x+
1
x
2+1,再把已知代入即可;
(2)根据一元二次方程有两个不相等的实根,则判别式△>0,并且两根的和大于0,且两根的积大于0,根据一元二次方程的根与系数的关系即可得到关于a的不等式,即可求得a的范围.
解答:解:(1)∵x+
1
x
=3,
x4+3x2+1
x2
=x2+3+
1
x2
=(x+
1
x
2+1,
=32+1=10,
x2
x4+3x2+1
=
1
10

(2)设方程的两个不相等的正根为x1、x2,则:
△=(-1)2-4(1-a)>0 ①,
x1+x2=1>0,x1x2=1-a>0 ②,
解①,得:a>
3
4

解②,得:a<1,
所以a的取值范围是
3
4
<a<1.
点评:本题考查的是利用“整体代入法”求代数式的值及一元二次方程根与系数,锻炼了学生整体的思想意识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知x-
1
x
=4
,则x2+
1
x2
的值为(  )
A、6B、16C、14D、18

查看答案和解析>>

科目:初中数学 来源: 题型:

求值:
(1)已知
1
x
+
1
y
=8
,求
2x-3xy+2y
x+2xy+y
的值.
(2)已知
x2+1
x
=5
,求x2+
1
x2
的值.
(3)若a2+b2-10a-6b+34=0,求
a+b
a-b
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x+
1
x
=3
,则x10+x5+
1
x5
+
1
x10
=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知
x-1
x
=-
1
x
x2-x
,则
xy3
=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x+
1
x
=
7
,则x-
1
x
的值为(  )

查看答案和解析>>

同步练习册答案