【题目】如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.
(1)求出A、B、C三点的坐标和抛物线的对称轴;
(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;
①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?
②设△BCF的面积为S,求S与m的函数关系式,S是否有最大值?如有,请求出最大值,没有请说明理由.
![]()
【答案】(1)A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;(2)见解析
【解析】
试题(1)对于抛物线解析式,令y=0求出x的值,确定出A与B坐标,令x=0求出y的值确定出C的做准备,进而求出对称轴即可;(2)①根据B与C坐标,利用待定系数法确定出直线BC解析式,进而表示出E与P坐标,根据抛物线解析式确定出D与F坐标,表示出PF,利用平行四边形的判定方法确定出m的值即可;②连接BF,设直线PF与x轴交于点M,求出OB的长,三角形BCF面积等于三角形BFP面积加上三角形CFP面积,列出S关于m的二次函数解析式,利用二次函数性质确定出S取得最大值时m的值即可.
试题解析:(1)对于抛物线y=﹣x2+2x+3,
令x=0,得到y=3;
令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,
解得:x=﹣1或x=3,
则A(﹣1,0),B(3,0),C(0,3),抛物线对称轴为直线x=1;
(2)①设直线BC的函数解析式为y=kx+b,
把B(3,0),C(0,3)分别代入得:
,
解得:k=﹣1,b=3,
∴直线BC的解析式为y=﹣x+3,
当x=1时,y=﹣1+3=2,
∴E(1,2),
当x=m时,y=﹣m+3,
∴P(m,﹣m+3),
令y=﹣x2+2x+3中x=1,得到y=4,
∴D(1,4),
当x=m时,y=﹣m2+2m+3,
∴F(m,﹣m2+2m+3),
∴线段DE=4﹣2=2,
∵0<m<3,
∴yF>yP,
∴线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,
连接DF,由PF∥DE,得到当PF=DE时,四边形PEDF为平行四边形,
由﹣m2+3m=2,得到m=2或m=1(不合题意,舍去),
则当m=2时,四边形PEDF为平行四边形;
②连接BF,设直线PF与x轴交于点M,由B(3,0),O(0,0),可得OB=OM+MB=3,
∵S=S△BPF+S△CPF=
PFBM+
PFOM=
PF(BM+OM)=
PFOB,
∴S=
×3(﹣m2+3m)=﹣
m2+
m(0<m<3),
则当m=
时,S取得最大值.
![]()
科目:初中数学 来源: 题型:
【题目】如图,在
ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.
![]()
(1)求证:△ADE≌△BFE;
(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在
中,
,
,点
是线段
上一动点(
不与
,
重合).
(1)如图1,当点
为
的中点,过点
作
交
的延长线于点
,求证:
;
(2)连接
,作
,
交
于点
.若
时,如图2.
①
______;
②求证:
为等腰三角形;
(3)连接CD,∠CDE=30°,在点
的运动过程中,
的形状可以是等腰三角形吗?若可以,请求出
的度数;若不可以,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在
中,
,
,
,
可以由
绕点
顺时针旋转得到,其中点
与点
是对应点,点
与点
是对应点,连接
,且
、
、
在同一条直线上,则
的长为( )
![]()
A.6B.
C.
D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个长为15m的梯子斜靠在墙上,梯子的顶端距地面的距离为12m,
①如果梯子的顶端下滑了1m,那么梯子的底端也向后滑动1m吗?请通过计算解答.
②梯子的顶端从A处沿墙AO下滑的距离与点B向外移动的距离有可能相等吗?若有可能,请求出这个距离,没有可能请说明理由.
③若将上题中的梯子换成15米长的直木棒,将木棒紧靠墙竖直放置然后开始下滑直至直木棒的顶端A滑至墙角O处,试求出木棒的中点Q滑动的路径长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线BD上有一点P,使PC+PE的和最小,则这个最小值为_______.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )
![]()
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】跳远运动员李阳对训练效果进行测试.6次跳远的成绩如下:7.5,7.7,7.6,7.7,7.9,7.8(单位:m)这六次成绩的平均数为7.7m,方差为
.如果李阳再跳一次,成绩为7.7m.则李阳这7次跳远成绩的方差_____(填“变大”、“不变”或“变小”).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图
,已知直线
与
轴,
轴分别交于
,
两点,以
为直角顶点在第二象限作等腰
.
![]()
(1)求点
的坐标,并求出直线
的关系式;
(2)如图
,直线
交
轴于
,在直线
上取一点
,连接
,若
,求证:
.
(3)如图
,在(1)的条件下,直线
交
轴于点
,
是线段
上一点,在
轴上是否存在一点
,使
面积等于
面积的一半?若存在,请求出点
的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com