精英家教网 > 初中数学 > 题目详情

某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套。已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利45元;做一套N型号的时装需要A种布料1.1m,B种布料0.4 m,可获利50元。若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元。
(1)求y与x的函数关系式,并求出x的取值范围;(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?

(1);(2)当生产N型号的时装44套时,所获利润最大,最大利润是3820元.

解析考点:一次函数的应用。
分析:
(1)因为生产M、N两种型号的时装共80套,如果生产N型号的时装x套,那么生产M型号的时装为80-x,由于生产M可以获利45元,生产N型号可以获利50元,则可以到x与总利润y的关系;
(2)当布料得到最大利用,且恰当时,利润最大,A种布料不可能用的比70m多,M型号的时装需用A种布料0.6m,所以可以知道,N型号的时装需用A种布料1.1m,1.1x+0.6(80-x)≤70.
解答:
(1)由题意可知:N型号的时装x套,那么生产M型号的时装为80-x,M可以获利45元,生产N型号可以获利50元
∴y=45(80-x)+50x
即y=5x+3600;
∵A种布料不可能用的比70m多,从题意知
0.6(80-x)+1.1x≤70
∴x≤44。
又∵B种布料不可能用的比52m多,从题意知
0.9(80-x)+0.4x≤52
∴x≥40。
∴40≤x≤44;
(2)∵总利润:y=5x+3600,40≤x≤44,
∴当x=44时y=3820最大。
即N型号的时装为44套时,所获总利润最大,最大总利润是3820元。
点评:本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某服装厂现有甲种布料42米,乙种布料30米.现计划用这两种布料生产M,N两种型号的校服共40件,已知做一件M型号的校服需要用甲种布料0.8米,乙种布料1.1米.做一件N型号的校服需用甲种布料1.2米,乙种布料0.5米,按要求生产M,N两种型号的校服,有哪几种生产方案?请你设计出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄冈一模)某服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装80套,每套时装所需布料以及利润见表:若设生产M型号的时装x套,用这批布料生产这两种型号的时装所获得的总利润为y元,求:
(1)y与x的函数关系式,并写出自变量x的取值范围;
(2)该服装厂生产M型号的时装多少套时所获利润最大?最大利润多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

某服装厂现有A种布料70米,B种布料52米.现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号时装需用A种布料0.6米,B种布料0.9米;做一套N型号时装需用A种布料1.1米,B种布料0.4米.本着最大限度使用现有布料的原则,请你设计这两种型号时装的生产方案(即两种型号时装分别计划生产的套数),有几种?请写出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题10分)某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M, N两种型号的时装80套,已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利45元,做一套N型号的时装需要A种布料1.1m,B种布料0.4m,可获利50元,若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元。
【小题1】(1)求y与x的函数关系式,并求出自变量x的取值范围。
【小题2】(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

某服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装80套。已知做一套M型号的时装需要A种布料0.6m,B种布料0.9m,可获利45元;做一套N型号的时装需要A种布料1.1m,B种布料0.4 m,可获利50元。若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获的总利润为y元。
(1)求y与x的函数关系式,并求出x的取值范围;(2)该服装厂在生产这批时装中,当生产N型号的时装多少套时,所获利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案