
解:(1)过点C作CD⊥OA于点D.(如图)
∵OC=AC,∠ACO=120°,
∴∠AOC=∠OAC=30°.
∵OC=AC,CD⊥OA,∴OD=DA=1.
在Rt△ODC中,OC=

=

=

(i)当0<t<

时,OQ=t,AP=3t,OP=OA-AP=2-3t.
过点Q作QE⊥OA于点E.(如图)
在Rt△OEQ中,

∵∠AOC=30°,
∴QE=

OQ=

,
∴S
△OPQ=

OP•EQ=

(2-3t)•

=-

+

t,
即S=-

+

t;
(ii)当

<t≤

时(如图)
OQ=t,OP=3t-2.
∴∠BOA=60°,∠AOC=30°,∴∠POQ=90°.
∴S
△OPQ=

OQ•OP=

t•(3t-2)=

-t,
即S=

-t;
故当0<t<

时,S=-

+

t,当

<t≤

时,S=

-t
(2)D(

,1)或(

,0)或(

,0)或(

,

)
(3)△BMN的周长不发生变化.理由如下:
延长BA至点F,使AF=OM,连接CF.(如图)

又∵∠MOC=∠FAC=90°,OC=AC,
∴△MOC≌△FAC,
∴MC=CF,∠MCO=∠FCA.
∴∠FCN=∠FCA+∠NCA=∠MCO+∠NCA
=∠OCA-∠MCN
=60°,
∴∠FCN=∠MCN.
在△MCN和△FCN中,

,
∴△MCN≌△FCN,
∴MN=NF.
∴BM+MN+BN=BM+NF+BN=BO-OM+BA+AF=BA+BO=4.
∴△BMN的周长不变,其周长为4.
分析:(1)由于点Q从点O运动到点C需要

秒,点P从点A→O→B需要

秒,所以分两种情况讨论:①0<t<

;②

≤t<

.针对每一种情况,根据P点所在的位置,由三角形的面积公式得出△OPQ的面积S与运动的时间t之间的函数关系,并且得出自变量t的取值范围;
(2)如果△OCD为等腰三角形,那么分D在OA边或者OB边上或AB边上三种情形.每一种情形,都有可能O为顶点,C为顶点,D为顶点,分别讨论,得出结果;
(3)如果延长BA至点F,使AF=OM,连接CF,则由SAS可证△MOC≌△FAC,得出MC=CF,再由SAS证出△MCN≌△FCN,得出MN=NF,那么△BMN的周长=BA+BO=4.
点评:本题综合考查了等腰三角形、等边三角形的性质,全等三角形的判定.难度很大.注意分类讨论时,做到不重复,不遗漏.