精英家教网 > 初中数学 > 题目详情
21、如图,△ABC中,AD⊥BC于D点,E为BD上的一点,EG∥AD,分别交AB和CA的延长线于F、G两点,∠AFG=∠AGF.
(1)求证:△ABD≌△ACD;
(2)若∠ABC=40°,求∠GAF的大小.
分析:(1)由已知条件可直接得到AD为公共边,∠ADB=∠ADC=90°,据两直线平行间接可得到∠CAD=∠BAD,即可判定△ABD≌△ACD(ASA).
(2)利用(1)中结论易求得∠C、∠BAC的度数,即可得∠GAF的度数.
解答:(1)证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°.
∵GE∥AD,
∴∠CAD=∠AGF,∠BFE=∠BAD,
∵∠BFE=∠AFG,∠AFG=∠AGF,
∴∠CAD=∠BAD;
∴△ABD≌△ACD(ASA).

(2)解:∵∠ABC=40°,
∴∠C=40°,
∴∠CAD=50°,
∴∠BAC=100°,
∴∠GAF=80°.
点评:本题主要考查判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题还涉及到三角形外角和内角的关系知识点,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案