【题目】如图,已知数轴上点
表示的数为
,点
表示的数为
,以
为边在数轴的上方作正方形ABCD.动点
从点
出发,以每秒
个单位长度的速度沿数轴正方向匀速运动,同时动点
从点
出发,以每秒
个单位长度的速度向点
匀速运动,到达
点后再以同样的速度沿数轴正方向匀速运动,设运动时间为
秒
.
![]()
(1)若点
在线段
.上运动,当t为何值时,
?
(2)若点
在线段
上运动,连接
,当t为何值时,三角形
的面积等于正方形
面积的
?
(3)在点
和点
运动的过程中,当
为何值时,点
与点
恰好重合?
(4)当点
在数轴上运动时,是否存在某-时刻t,使得线段
的长为
,若存在,求出
的值;若不存在,请说明理由.
【答案】(1)
;(2)
;(3)4;(4)存在,t=3或5,理由见详解.
【解析】
(1)由数轴上点
表示的数为
,点
表示的数为
,以
为边在数轴的上方作正方形ABCD,
,列出方程,即可求解;
(2)根据三角形
的面积等于正方形
面积的
,列出方程,即可;
(3)根据等量关系,列出方程即可求解;
(4)分两种情况:①当点Q在点P的左侧时, ②当点Q在点P的右侧时,分别列出方程,即可求解.
(1)∵数轴上点
表示的数为
,点
表示的数为
,以
为边在数轴的上方作正方形ABCD,
∴AD=AB=4,
∴AQ=4-2t,AP=t,
∵
,
∴4-2t =t,解得:t=
,
∴当t=
秒时,
;
(2)∵AQ=4-2t,AB=4,
∴
,正方形
面积=4×4=16,
∴8-4t=
,解得:t=
,
∴当t=
秒时,三角形
的面积等于正方形
面积的
;
(3)根据题意得:2t-4=t,解得:t=4,
∴当t=4秒时,点
与点
恰好重合;
(4)①当点Q在点P的左侧时,t-(2t-4)=1,解得:t=3,
②当点Q在点P的右侧时,(2t-4)-t=1,解得:t=5,
∴当t=3秒或5秒时,线段
的长为
.
科目:初中数学 来源: 题型:
【题目】如图1,四边形
中,
,
,
,
,点
从点
出发,以每秒2个单位长度的速度向点
运动,同时,点
从点
出发,以每秒1个单位长度的速度向点
运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点
作
于点
,连接
交
于点
,连接
,设运动时间为
秒.
(1)连接
、
,当
为何值时,四边形
为平行四边形;
(2)求出点
到
的距离;
(3)如图2,将
沿
翻折,得
,是否存在某时刻
,使四边形
为菱形,若存在,求
的值;若不存在,请说明理由
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明用尺规作图作△ABC边AC上的高BH,作法如下:
①分别以点D,E为圆心,大于
DE的长为半径作弧,两弧交于F;
②作射线BF,交边AC于点H;
③以B为圆心,BK长为半径作弧,交直线AC于点D和E;
④取一点K,使K和B在AC的两侧;
所以,BH就是所求作的高. 其中顺序正确的作图步骤是( )
![]()
A. ①②③④ B. ④③②① C. ②④③① D. ④③①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y =ax+b的图像与反比例函数y =
的图像交于A(4,﹣2)、B(﹣2,m)两点,与x轴交于点C.
(1)求a,m的值;
(2)请直接写出不等式ax+b≥
的解集;
(3)点P在反比例函数图像上,且点P的横坐标为-4,在平面直角坐标系中是否存在一点Q,使得以A、B、P、Q为顶点的四边形为平行四边形?如果存在,请直接写出点Q的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴,y轴上,连OB,将纸片OABC沿OB折叠,使点A落在A′的位置,若OB=
,tan∠BOC=
,则点A′的坐标( )
![]()
A. (
,
) B. (﹣
,
) C. (﹣
,
) D. (﹣
,
)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=
在第一象限内的图象与△ABC有交点,则k的取值范围是_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某摩托车厂本周计划每日生产450辆摩托车,由于工人实行轮休, 每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表: [增加的辆数为正数,减少的辆数为负数]
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | -5 | +7 | -3 | +4 | +10 | -9 | -25 |
(1)本周星期六生产多少辆摩托车?
(2)本周总产量与计划产量相比,是增加了还是减少了?为什么?
(3)产量最多的那天比产量最少的那天多生产多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
![]()
(1)求∠BOD的度数;
(2)试判断OE是否平分∠BOC,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如
就是完全对称式(代数式中
换成b,b换成
,代数式保持不变).下列三个代数式:①
;②
;③
.其中是完全对称式的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com