精英家教网 > 初中数学 > 题目详情
(2010•吴江市模拟)如图,在Rt△ABC中,∠ACB=90°,AC<BC,D为AB的中点,DE交AC于点E,DF交BC于点F,且DE⊥DF,过A作AG∥BC交FD的延长线于点G.
(1)求证:AG=BF;
(2)若AE=9,BF=18,求线段EF的长.

【答案】分析:(1)由于D是AB的中点,AG∥BC,易证,△ADG≌△BDF,可得结论.
(2)连接EG,根据全等三角形的性质及勾股定理不难求得EF的长.
解答:(1)证明:∵D是AB的中点,
∴AD=BD.
∵AG∥BC,
∴∠GAD=∠FBD.
∵∠ADG=∠BDF,(3分)
∴△ADG≌△BDF.(4分)
∴AG=BF.

(2)解:连接EG,
∵△ADG≌△BDF,
∴GD=FD.
∵DE⊥DF,
∴EG=EF.(6分)
∵AG∥BC,∠ACB=90°,
∴∠EAG=90°.(7分)
在Rt△EAG中,
∵EG2=AE2+AG2=AE2+BF2
∴EF2=AE2+BF2且AE=9,BF=18.(9分)
∴EF=9.(10分)
点评:本题综合考查了等腰三角形的性质,全等三角形的判定及勾股定理等相关知识的应用能力.
练习册系列答案
相关习题

科目:初中数学 来源:2010年江苏省苏州市吴江市中考数学模拟试卷(解析版) 题型:解答题

(2010•吴江市模拟)如图,矩形A′B′C′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的,O′点在x轴的正半轴上,B点的坐标为(1,3).O′C′与AB交于D点.
(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点且图象顶点M的纵坐标为-1,求这个二次函数的解析式;
(2)求D点的坐标;
(3)若将直线OC绕点O旋转α度(0<α<90)后与抛物线的另一个交点为点P,则以O、O′、B、P为顶点的四边形能否是平行四边形?若能,求出tanα的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省泰州市泰兴市济川实验初中阶段测试数学试卷(解析版) 题型:解答题

(2010•吴江市模拟)如图,矩形A′B′C′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的,O′点在x轴的正半轴上,B点的坐标为(1,3).O′C′与AB交于D点.
(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点且图象顶点M的纵坐标为-1,求这个二次函数的解析式;
(2)求D点的坐标;
(3)若将直线OC绕点O旋转α度(0<α<90)后与抛物线的另一个交点为点P,则以O、O′、B、P为顶点的四边形能否是平行四边形?若能,求出tanα的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省连云港市中考数学原创试卷大赛(8)(解析版) 题型:解答题

(2010•吴江市模拟)如图,矩形A′B′C′O′是矩形OABC(边OA在x轴正半轴上,边OC在y轴正半轴上)绕B点逆时针旋转得到的,O′点在x轴的正半轴上,B点的坐标为(1,3).O′C′与AB交于D点.
(1)如果二次函数y=ax2+bx+c(a≠0)的图象经过O,O′两点且图象顶点M的纵坐标为-1,求这个二次函数的解析式;
(2)求D点的坐标;
(3)若将直线OC绕点O旋转α度(0<α<90)后与抛物线的另一个交点为点P,则以O、O′、B、P为顶点的四边形能否是平行四边形?若能,求出tanα的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年江苏省扬州市中考数学模拟卷(解析版) 题型:填空题

(2010•吴江市模拟)如图,直线AB∥CD,则∠C=    度.

查看答案和解析>>

同步练习册答案