¡¾´ð°¸¡¿
·ÖÎö£º£¨1£©¸ù¾ÝËıßÐÎOABCÊǾØÐΣ¬A£¨3£¬0£©£¬C£¨0£¬1£©Çó³öB¡äµÄ×ø±ê£¬ÉèÖ±ÏßBB¡äµÄ½âÎöʽΪy=mx+n£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉÇó³ö´ËÖ±ÏߵĽâÎöʽ£¬½ø¶ø¿ÉµÃ³öM¡¢NÁ½µãµÄ×ø±ê£¬Éè¶þ´Îº¯Êý½âÎöʽΪy=ax
2+bx+c£¬°ÑCMNÈýµãµÄ×ø±ê´úÈë´Ë½âÎöʽ¼´¿ÉÇó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÉèPµã×ø±êΪ£¨x£¬y£©£¬Á¬½ÓOP£¬PM£¬ÓɶԳƵÄÐÔÖʿɵóöOP¡ÍMN£¬OE=PE£¬PM=OM=5£¬ÔÙÓɹ´¹É¶¨ÀíÇó³öMNµÄ³¤£¬ÓÉÈý½ÇÐεÄÃæ»ý¹«Ê½µÃ³öOEµÄ³¤£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽÇó³öx¡¢yµÄÖµ£¬°ÑxµÄÖµ´úÈë¶þ´Îº¯Êý¹ØÏµÊ½¿´ÊÇ·ñÊʺϼ´¿É£»
£¨3£©ÓÉÓÚÅ×ÎïÏßÒÆ¶¯µÄ·½Ïò²»ÄÜÈ·¶¨£¬¹ÊÓ¦·ÖÈýÖÖÇé¿ö½øÐÐÌÖÂÛ£®
½â´ð£º
½â£º£¨1£©¡ßËıßÐÎOABCÊǾØÐΣ¬
¡àB£¨3£¬1£©£¬
¸ù¾ÝÌâÒ⣬µÃB¡ä£¨-1£¬3£©
°ÑB£¨3£¬1£©£¬B¡ä£¨-1£¬3£©´úÈëy=mx+nÖУ¬

£¬
½âµÃ

¡àm=-

£¬n=

¡à´ËÒ»´Îº¯ÊýµÄ½âÎöʽΪ£ºy=-

x+

£¬
¡àN£¨0£¬

£©£¬M£¨5£¬0£©
Éè¶þ´Îº¯Êý½âÎöʽΪy=ax
2+bx+c£¬
°ÑC¡ä£¨-1£¬0£©£¬N£¨0£¬

£©£¬M£¨5£¬0£©´úÈëµÃ£º

£¬
½âµÃ

£¬
¡à¶þ´Îº¯ÊýµÄ½âÎöʽΪy=-

x
2+2x+

£»
£¨2£©ÉèPµã×ø±êΪ£¨x£¬y£©£¬Á¬½ÓOP£¬PM£¬
¡ßO¡¢P¹ØÓÚÖ±ÏßMN¶Ô³Æ£¬
¡àOP¡ÍMN£¬OE=PE£¬PM=OM=5£¬

¡ßN£¨0£¬

£©£¬M£¨5£¬0£©£¬
¡àMN=

=

=

£¬OE=

=

=

£¬
¡àOP=2OE=2

£¬
¡àOP=

=2

¢Ù£¬
PM=

=5¢Ú£¬
¢Ù¢ÚÁªÁ¢£¬½âµÃ

£¬
°Ñx=2´úÈë¶þ´Îº¯ÊýµÄ½âÎöʽy=-

x
2+2x+

µÃ£¬y=

£¬
¡àµãP²»Ôڴ˶þ´Îº¯ÊýµÄͼÏóÉÏ£»
£¨3£©¢ÙÔÚÉÏÏ·½ÏòÉÏÆ½ÒÆÊ±£¬¸ù¾Ý¿ª¿Ú´óС²»±ä£¬¶Ô³ÆÖá²»±ä£¬
ËùÒÔ£¬¶þ´ÎÏîϵÊýºÍÒ»´ÎÏîϵÊý²»±ä£¬
¸ù¾ÝËü¹ýԵ㣬°Ñ£¨0£¬0£©Õâ¸öµã´úÈëµÃ³£ÊýÏîΪ0£¬
нâÎöʽ¾ÍΪ£ºy=-

x
2+2x£»
¢ÚÔÚ×óÓÒ·½ÏòÆ½ÒÆÊ±£¬¿ª¿Ú´óС²»±ä£¬¶þ´ÎÏîϵÊý²»±ä£¬Îª-

£¬
Õâʱ¸ù¾ÝÒѾÇó³öµÄC¡ä£¨-1£¬0£©£¬M£¨5£¬0£©£¬¿ÉÖªËüÓëXÖáµÄÁ½¸ö½»µãµÄ¾àÀ뻹ÊÇΪ6£¬
ËùÒÔÓÐÁ½ÖÖÇé¿ö£¬Ïò×óÒÆ5¸öµ¥Î»£¬´ËʱMÓëÔµãÖØºÏ£¬ÁíÒ»µã¾¹ý£¨-6£¬0£©£¬
´úÈë½â³ö½âÎöʽΪy=-

x
2-3x£»
¢Ûµ±ËüÏòÓÒÒÆÊ±ÒªÒÆÒ»¸öµ¥Î»C¡äÓëÔµãÖØºÏ£¬´ËʱÁíÒ»µã¹ý£¨6£¬0£©£¬
ËùÒÔ½â³ö½âÎöʽΪy=-

x
2+3x£®
µãÆÀ£º±¾Ì⿼²éµÄÊǶþ´Îº¯Êý×ÛºÏÌâ£¬Éæ¼°µ½Óôý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý¼°Ò»´Îº¯ÊýµÄ½âÎöʽ£¬¶þ´Îº¯ÊýͼÏóµÄ¼¸ºÎ±ä»»µÈÏà¹ØÖªÊ¶£¬ÔÚ½â¢ÛʱҪӦÓ÷ÖÀàÌÖÂÛµÄ˼Ïë½øÐнâ´ð£®