精英家教网 > 初中数学 > 题目详情

有四个实验:

(1)从黑、蓝、红三支颜色的笔和白、绿两块橡皮中任意拿一只笔和一块橡皮,考查取到红笔、绿橡皮的机会为多少?

(2)从一副去掉大小王的52张牌中,抽到方块的机会是多少?

(3)在1~10中任取两个数的和为奇数的机会是多少?

(4)如图是一些卡片,它们的背面都一样,现将它们背面朝上,从中任意摸一纸片,则摸到奇数卡的机会是多少?

请在四个实验中选取两个进行模拟实验,自己设计模拟实验的方案.

答案:略
解析:

(1)16.7%;(2)25%;(3)55.6%;(4)


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,放在平面直角坐标系中的正方形ABCD的边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(如图,它有四个顶点,各顶点数分别是1、2、3、4),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的点数作为直角坐标系中点P的坐标(第一次的点数为横坐标,第二次的点数为纵坐标).
(1)求点P落在正方形面上(含边界,下同)的概率;
(2)将正方形ABCD平移数个单位,是否存在一种平移,使点P落在正精英家教网方形面上的概率为
14
?若存在,指出其中的一种平移方式;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网精英家教网(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:
抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为
34
?若存在,指出其中的一种平移方式;若不存在,请说明理由;
(二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD
面上的概率为
34
;若存在,指出其中的一种平移方式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《图形的平移》(01)(解析版) 题型:解答题

(2005•绵阳)(一)如图,放在直角坐标系中的正方形ABCD的边长为4.现做如下实验:
抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中的一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点的点数作为直角坐标系中P点的坐标(第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内和边界,下同)的概率;
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD面上的概率为?若存在,指出其中的一种平移方式;若不存在,请说明理由;
(二)若将(一)中所做实验用的“正四面体骰子”改为“各面标有1至6这六个数字中的一个的正方体骰子”,其余(实验步骤、作用)均不变.将正方形ABCD平移整数个单位,试求出点P落在正方形ABCD面上的概率.

查看答案和解析>>

同步练习册答案