已知矩形纸片OABC的长为4,宽为3,以长OA所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点O、A不重合),现将△POC沿PC翻折得到△PEC,再在AB边上选取适当的点D,将△PAD沿PD翻折,得到△PFD,使得直线PE、PF重合.
(1)若点E落在BC边上,如图①,求点P、C、D的坐标,并求过此三点的抛物线的函数关系式;
(2)若点E落在矩形纸片OABC的内部,如图②,设OP=x,AD=y当x为何值时,y取得最大值?
(3)在(1)的情况下,过点P、C、D三点的抛物线上是否存在点Q,使△PDQ是以PD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:第2章《二次函数》中考题集(32):2.3 二次函数的应用(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:第27章《二次函数》中考题集(31):27.3 实践与探索(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:第2章《二次函数》中考题集(30):2.4 二次函数的应用(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2009年广东省湛江市中考数学试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com