精英家教网 > 初中数学 > 题目详情

如图,△ABC中,∠BAC=110°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.
(1)求∠DAF的度数;
(2)如果BC=10cm,求△DAF的周长.

解:(1)设∠B=x,∠C=y.
∵∠BAC+∠B+∠C=180°,
∴110°+∠B+∠C=180°,
∴x+y=70°.
∵AB、AC的垂直平分线分别交BA于E、交AC于G,
∴DA=BD,FA=FC,
∴∠EAD=∠B,∠FAC=∠C.
∴∠DAF=∠BAC-(x+y)=110°-70°=40°.

(2)∵AB、AC的垂直平分线分别交BA于E、交AC于G,
∴DA=BD,FA=FC,
∴△DAF的周长为:AD+DF+AF=BD+DF+FC=BC=10(cm).
分析:(1)根据三角形内角和定理可求∠B+∠C;根据垂直平分线性质,DA=BD,FA=FC,则∠EAD=∠B,∠FAC=∠C,得出∠DAF=∠BAC-∠EAD-∠FAC=110°-(∠B+∠C)求出即可.
(2)由(1)中得出,AD=BD,AF=FC,即可得出△DAF的周长为BD+FC+DF=BC,即可得出答案.
点评:此题考查了线段垂直平分线的性质、三角形内角和定理以及等腰三角形的性质.此题难度不大,注意掌握垂直平分线上任意一点,到线段两端点的距离相等定理的应用,注意数形结合思想与整体思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案