精英家教网 > 初中数学 > 题目详情

已知:如图,点D、E、F分别在△ABC的边AB、AC、BC上,DF∥AC,BD=2AD,AE=2EC.
(1)求证:EF∥AB;
(2)联结DE,当∠ADE=∠C时,求证:AB=数学公式AC.

证明:(1)∵BD=2AD,AE=2EC,

又∵DF∥AC,

.,
∴EF∥AB;
(2)∵∠ADE=∠C,∠A=∠A,
∴△ADE∽△ACB,

又∵BD=2AD,AE=2EC,
∴AE=AC,AD=AB,

∴AB2=2AC2
即AB=AC.
分析:(1)根据:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边即可证明EF∥AB;
(2)联结DE,当∠ADE=∠C时,可证明△ADE∽△ACB,根据相似三角形的性质可得:,再有已知条件即可证明AB=AC.
点评:本题考查了利用一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边和相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、已知:如图,点O为?ABCD的对角线BD的中点,直线EF经过点O,分别交BA、DC的延长线于点E、F,求证:AE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A、B分别在x轴、y轴上,以OA为直径的⊙P交AB于点C(-
2
5
4
5
)
,E为直径精英家教网OA上一动点(与点O、A不重合).EF⊥AB于点F,交y轴于点G.设点E的横坐标为x,△BGF的面积为y.
(1)求直线AB的解析式;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,点A、B、C、D在同一条直线上,EA⊥AD,FD⊥AD,AE=DF,AB=DC.BF,CE相交于点O.
(1)求证:∠ACE=∠DBF;
(2)若点B是AC的中点,∠E=60°,AE=4,求△OBC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点P是半径为5cm的⊙O外的一点,OP=13cm,PT切⊙O于T,过P点作⊙O的割线PAB,(PB>PA).设PA=x,PB=y,求y关于x的函数解析式,并确定自变量x的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淮阴区模拟)已知:如图,点E、A、C在同一条直线上,AB=CE,AC=CD,BC=ED.求证:AB∥CD.

查看答案和解析>>

同步练习册答案