精英家教网 > 初中数学 > 题目详情
(2006•龙岩)如图,已知⊙O的半径为5,弦AB=8,P是弦AB上一点,且PB=2,则OP=   
【答案】分析:连接OB,作OM⊥AB与M.根据垂径定理和勾股定理求解.
解答:解:连接OB,作OM⊥AB与M,则BM=4,PM=2,
在直角△OBM中,根据勾股定理得到:OM=3;
在直角△OPM中根据勾股定理得到:OP==
点评:此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.
练习册系列答案
相关习题

科目:初中数学 来源:2011年上海市中考数学模拟试卷(解析版) 题型:解答题

(2006•龙岩)如图,已知抛物线y=-x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2006•龙岩)如图,已知抛物线y=-x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年福建省漳州市诏安县南城中学中考数学模拟试卷(解析版) 题型:解答题

(2006•龙岩)如图,已知抛物线y=-x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:2006年福建省龙岩市中考数学试卷(解析版) 题型:解答题

(2006•龙岩)如图,已知抛物线y=-x2+bx+c与坐标轴交于A,B,C三点,点A的横坐标为-1,过点C(0,3)的直线y=-x+3与x轴交于点Q,点P是线段BC上的一个动点,PH⊥OB于点H.若PB=5t,且0<t<1.
(1)确定b,c的值;
(2)写出点B,Q,P的坐标(其中Q,P用含t的式子表示);
(3)依点P的变化,是否存在t的值,使△PQB为等腰三角形?若存在,求出所有t的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案