精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知等腰Rt△AOB,其中∠AOB=90°,OA=OB=2,E、F为斜边AB上的两个动点(E比F更靠近A),满足∠EOF=45°,
(1)求证:△AOF∽△BEO;
(2)求AF•BE的值;
(3)作EM⊥OA于M,FN⊥OB于N,求OM•ON的值;
(4)求线段EF长的最小值.(提示:必要时可以参考以下公式:当x>0,y>0时,x+y=(
x
-
y
)2+2
xy
x+
1
x
=(
x
-
1
x
)2+2
分析:(1)根据等腰直角三角形的性质,得∠A=∠B=45°;根据三角形的外角的性质,得∠AFO=∠B+∠BOF=45°+∠BOF,结合∠BOE=∠EOF+∠BOF=45°+∠BOF,证明∠AFO=∠BOE,从而根据两角对应相等,即可证明△AOF∽△BEO;
(2)根据相似三角形的性质,得
BE
OA
=
OB
AF
,即AF•BE=4;
(3)作斜边AB上的高OD,并记OM=a,ON=b.根据等腰直角三角形的性质,可以分别用a表示ME,DF,BN的长;根据△MOE∽△DOF,就可求得OM•ON的值;
(4)用a和b表示EF的长,从而分析EF的最小值.
解答:(1)证明:∵△AOB是等腰直角三角形,
∴∠A=∠B=45°.
∵∠AFO=∠B+∠BOF=45°+∠BOF,
又∵∠BOE=∠EOF+∠BOF=45°+∠BOF,
∴∠AFO=∠BOE.
∴△AOF∽△BEO.

(2)∵△BOE∽△AOF,
BE
OA
=
OB
AF

∴AF•BE=4.精英家教网

(3)作斜边AB上的高OD,并记OM=a,ON=b.
则易得ME=2-a,OD=
2
,FB=
2
BN=
2
(2-b),
DF=BD-BF=
2
-
2
(2-b)=
2
(b-1),
∵∠EMO=∠ODF=90°,
∵∠EOF=45°,
∵∠MOE+∠EOD=∠FOD+∠EOD=45°
∴∠MOE=∠DOF,
∴△MOE∽△DOF,
ME
DF
=
OM
OD

2-a
2
(b-1)
=
a
2

∴ab=2,
即OM•ON=2.
(4)解:EF=AB-AE-BF=2
2
-
2
(2-a)-
2
(2-b)=
2
(a+b)-2
2
=
2
(
a
-
b
)2+2
2ab
-2
2
=
2
(
a
-
b
)2+4-2
2

所以,当
a
=
b
a=b=
2
时,EF取得最小值4-2
2
点评:此题综合考查了相似三角形的判定和性质、等腰直角三角形的性质以及函数的最小值的求法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知等腰Rt△ABC,∠ACB=90°,AC=BC,D为BC边上一动点,BC=nDC,AD⊥EC于点E,延长BE交AC与点F.
(1)若n=3,则
CE
DE
=
 
AE
DE
=
 

(2)若n=2,求证:AF=2FC;
(3)当n=
 
,F为AC的中点(直接填出结果,不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•深圳二模)如图,已知等腰Rt△ABC中,∠B=90°,AB=BC=8cm,点P是线段AB上的点,点Q是线段BC延长线上的点,且AP=CQ,PQ与直线AC相交于点D.作PE⊥AC于点E,则线段DE的长度(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF的平分线上一点,且∠ADC=45°,CD交AB于E,
(1)求证:AD=CD;
(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知等腰Rt△ABC直角边长为1,以它的斜边AC为直角边画第二个等腰Rt△ACD,再以斜边AD为直角边画第三个Rt△ADE…,依此类推,AC长为
2
,AD长为2,第3个等腰直角三角形斜边AE长=
2
2
2
2
,第4个等腰三角形斜边AF长=
4
4
,则第n个等腰直角三角形斜边长=
2
n
2
n

查看答案和解析>>

同步练习册答案