精英家教网 > 初中数学 > 题目详情

如图,在三角形纸片ABC中,已知∠ABC=90°,AC=5,BC=4,过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN,当点P在直线l上移动时,折痕的端点M、N也随之移动,若限定端点M、N分别在AB、BC边上(包括端点)移动,则线段AP长度的最大值与最小值的差为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:关键在于找到两个极端,即AP取最大或最小值时,点M或N的位置.经实验不难发现,分别求出点M与A重合时,AP取最大值3和当点N与C重合时,AP的最小值4-所以可求线段AP长度的最大值与最小值之差.
解答:解:如图,过点C作CD⊥直线l交l于点D,
则四边形ABCD为矩形,通过操作知,当折叠过点A时,即点M与点A重合时,AP的值最大,
此时记为点P1,易证四边形ABNP1为正方形,
由于AC=5,BC=4,
故AB===3,
当折叠MN过点C时,AP的值最小,此时记为点P,
由于PC=BC=4,AB=CD=3,
故PD==
故此时AP=AD-PD=4-
线段AP长度的最大值与最小值的差为:3-(4-)=3-4+=-1.
故选:D.
点评:本题考查了学生的动手能力及图形的折叠、勾股定理的应用等知识,难度稍大,学生主要缺乏动手操作习惯,单凭想象容易造成错误.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为(  )
A、3
B、6
C、
3
D、2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠(折痕为DE),使点C落在△ABC内的C′处,若∠AEC′=20°,则∠BDC′的度数是(  )
A、30°B、40°C、50°D、60°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6,在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为(  )
A、3
B、6
C、2
3
D、
3

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,AC=6,∠A=30°,∠C=90°,将∠A沿DE折叠,使点A与点B重合,则折痕DE的长为(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•太原一模)如图,在三角形纸片ABC中,BC=3,AB=5,∠BCA=90°,将其对折后点A落在BC的延长线上,折痕与AC交于点E,则CE的长是(  )

查看答案和解析>>

同步练习册答案