已知二次函数
(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程
的两根.
![]()
(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函数的解析式.
解:(1)解方程
,得x=-5或x=1,
∵x1<x2,∴x1=﹣5,x2=1。∴A(﹣5,0),B(1,0)。
∴抛物线的解析式为:
(a>0)。
∴对称轴为直线x=2,顶点D的坐标为(-2,-9a)。
令x=0,得y=-5a,∴C点的坐标为(0,﹣5a)。
依题意画出图形,如图所示,
![]()
则OA=5,OB=1,AB=6,OC=5a。
过点D作DE⊥y轴于点E,
则DE=2,OE=9a,CE=OE-OC=4a。
∴![]()
。
而
,
∴
。
(2)如图所示,
在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,
在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,
设对称轴x=2与x轴交于点F,则AF=3,
在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2。
∵∠ADC=90°,∴△ACD为直角三角形,
由勾股定理得:AD2+CD2=AC2,
即
,化简得:
。
∵a>0,∴
。
∴抛物线的解析式为:
,即
。
【解析】(1)首先解一元二次方程,求出点A、点B的坐标,得到含有字母a的抛物线的交点式;然后分别用含字母a的代数式表示出△ABC与△ACD的面积,最后得出结论。
(2)在Rt△ACD中,利用勾股定理,列出一元二次方程,求出未知系数a,得出抛物线的解析式。
科目:初中数学 来源: 题型:
| A、y1≥y2 | B、y1>y2 | C、y1<y2 | D、y1≤y2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com