精英家教网 > 初中数学 > 题目详情
如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:
(1)BD=DE+CE;
(2)△ABD满足什么条件时,BD∥CE?
分析:(1)根据全等三角形的性质求出BD=AE,AD=CE,代入求出即可;
(2)根据全等三角形的性质求出∠E=∠BDA=90°,推出∠BDE=90°,根据平行线的判定求出即可.
解答:(1)解:∵△BAD≌△ACE,
∴BD=AE,AD=CE,
∴BD=AE=AD+DE=CE+DE,
即BD=DE+CE.

(2)解:△ABD满足∠ADB=90°时,BD∥CE,
理由是:∵△BAD≌△ACE,
∴∠E=∠ADB=90°(添加的条件是∠ADB=90°),
∴∠BDE=180°-90°=90°=∠E,
∴BD∥CE.
点评:本题考查了全等三角形的性质和平行线的判定等的应用,关键是通过三角形全等得出正确的结论,通过做此题培养了学生分析问题的能力,题型较好.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

9、如图,A、C、E三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,A、Q、R三点在一条直线上,S为直线外一点,∠AQS=136°,∠QRS=64°,则∠QSR=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A,B,C三点在同一平面内,从山脚缆车站A测得山顶C的仰角为45°,测得另一缆精英家教网车站B的仰角为30°,AB间缆绳长500米(自然弯曲忽略不计).(
3
≈1.73
,精确到1米)
(1)求缆车站B与缆车站A间的垂直距离;
(2)乘缆车达缆车站B,从缆车站B测得山顶C的仰角为60°,求山顶C与缆车站A间的垂直距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,A、B、C三点在⊙O上,∠BAC=60°,若⊙O的半径OC为12,则劣弧BC的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,A,O,B三点在同一直线上,OC,OE分别是∠BOD,∠AOD的平分线,OC与OE有什么位置关系?为什么?

查看答案和解析>>

同步练习册答案