精英家教网 > 初中数学 > 题目详情
如图,O是△ABC的内角平分线的交点,过O作DE⊥AO交AB,AC于D,E.
求证:BD•CE=OD•OE.
分析:首先证明△ADO≌△AEO(ASA),进而得出∠BDO=∠OEC=∠BOC,即可得出△DBO∽△OBC,再求出△BOC∽△OEC,△DBO∽△EOC,即可得出答案.
解答:证明:∵AO平分∠BAC,DE⊥AO,
∴∠DAO=∠EAO.
在△ADO和△AEO中
∠DAO=∠EAO
AO=AO
∠AOD=∠AOE

∴△ADO≌△AEO(ASA),
∴∠ADO=∠AEO,
∴∠BDO=∠OEC=90°+
1
2
∠BAC,
∴∠BOC=90°+
1
2
∠BAC,
∴∠BDO=∠OEC=∠BOC,
∵O是△ABC的内角平分线的交点,
∴∠1=∠2,
∴△DBO∽△OBC,
同理可得出:△BOC∽△OEC,
∴△DBO∽△EOC,
BD
OE
=
OD
EC

∴BD•EC=OD•OE.
点评:此题主要考查了相似三角形的判定与性质和全等三角形判定与性质,根据已知得出∠BDO=∠OEC=∠BOC是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的中线,∠ADC=60°,点C′与点C关于直线AD对称,若BC=6cm,则点B与点C′之间的距离为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O是△ABC的外接圆,已知∠B=62°,则∠CAO的度数是(  )
A、28°B、30°C、31°D、62°

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,AD是△ABC的角平分线,∠B=60°,E,F分别在AC、AB上,且AE=AF,∠CDE=∠BAC,那么,图中长度一定与DE相等的线段共有
3
条.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O是△ABC的外接圆,AB是直径,若∠B=50°,则∠A等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的外接圆直径,AD=
2
,∠B=∠DAC,则AC的值为
1
1

查看答案和解析>>

同步练习册答案