精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点P从原点出发,沿x轴向右以每秒2个单位长的速度运动t(t>0)秒,抛物线y=-x2+bx+c经过原点O和点P,顶点为M.矩形ABCD的一边CD在x轴上,点C与原点重合,CD=4,BC=9,在点P运动的同时,矩形ABCD沿x轴向右以每秒1个单位长的速度运动.
(1)求出抛物线的解析式(用含t的代数式表示);
(2)若(1)中的抛物线经过矩形区域ABCD(含边界)时,求出t的取值范围;
(3)当t=4秒时,过线段MP上一动点F作y轴的平行线交抛物线于E,求线段EF的最大值.

【答案】分析:(1)分别将点(0,0),(2t,0)代入二次函数解析式,即可得出抛物线的解析式;
(2)寻找两个临界点,①刚开始的时候,②抛物线经过点A的时候,分别求出此时t的值,继而可得出t的取值范围;
(3)先确定函数解析式,然后得出直线MP的解析式,设出点E、F的坐标,则EF之间的距离可表示为二次函数的形式,然后运用配方法求最值即可.
解答:解:(1)把x=0,y=0代入y=-x2+bx+c中,得c=0,
再把x=2t,y=0代入y=-x2+bx中,得b=2t
故抛物线的解析式为y=-x2+2tx.

(2)∵t>0,
∴在点P和矩形ABCD开始运动时就经过矩形区域ABCD,
当抛物线经过点A时,将A(t+4,9)代入y=-x2+2tx中,得-(t+4)2+2t(t+4)=9,
整理,解方程得:t1=-5(舍去),t2=5,
即可得当t>5时,抛物线不在经过矩形区域ABCD,
综上可得t的范围为:0<t≤5,

(3)如图,当t=4秒时,此时点D和点P重合,抛物线的解析式为y=-x2+8x.
设直线MP的解析式为y=kx+b,
∵点M(4,16)和点P(8,0)在直线MP上,


∴直线MP的解析式为y=-4x+32;
设F(m,-4m+32),则E(m,-m2+8m),
∵点F在线段MP上运动,
∴4≤m≤8,
∴EF=-m2+8m-(-4m+32)=-m2+12m-32,
∴当m=-=6时,EF=
∴线段EF的最大值是4.
点评:此题属于二次函数综合题,涉及了待定系数法求函数解析式,解答第二问的时候关键是求出两个边界点,第三问的解答中要求出直线MP的解析式,利用二次函数的最值法求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案