精英家教网 > 初中数学 > 题目详情
已知:如图,抛物线y=-
3
3
x2+mx+
3
与x轴交于A、B两点,与y轴交于点C,A点坐标为(-1,0)
(1)求m的值和点B的坐标;
(2)过A、B、C的三点的⊙M交y轴于另一点D,设P为弧CBD上的动点P(P不与C、D重合),连接AP交y轴于点H,问是否存在一个常数k,始终满足AH•AP=k?如果存在,请求出常数k;如果不存在,请说明理由;
(3)连接DM并延长交BC于N,交⊙M于点E,过E点的⊙M的切线分别交x轴、y轴于点F、G,试探究BC与FG的位置关系,并求直线FG的解析式.
(1)将A(-1,0)代入解析式y=-
3
3
x2+mx+
3

解得m=
2
3
3

令y=0,即-
3
3
x2+
2
3
3
x+
3
=0

解得x1=-1,x2=3,
因此B点坐标为(3,0);

(2)如图,假设存在常数k,满足AH•AP=k
连接CP,由垂径定理可知,
∴∠P=∠ACH(或利用∠P=∠ABC=∠ACO),
又∵∠CAH=∠PAC,
∴△ACH△APC,
AC
AH
=
AP
AC

∴即AC2=AH•AP,
在Rt△AOC中,AC2=AO2+OC2=12+(
3
2=4,
∴AH•AP=k=4;
(3)由A(-1,0),B(3,0)C(0,
3

根据圆的对称性,易知:⊙M半径为2,
M( 1,0)D(0,-
3
),
在Rt△DOM中,∠DOM=90°,OM=1,OD=
3

∴∠MDO=30°,
易得∠MFG=30°,在Rt△DGE中,∠GDE=30°,DE=4,
∴DG=
8
3
3
,OG=
5
3
3

∴G点的坐标为(0,
5
3
3

在Rt△GOF中∠OFG=30°,OG=
5
3
3

∴OF=5,
∴F点的坐标为(5,0)
∴直线FG的解析式为y=-
3
3
x+
5
3
3
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:直角梯形OABC中,BCOA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连接AD、BD.直角梯形OABC中,以O为坐标原点,A在x轴正半轴上建立直角坐标系,若抛物线y=ax2-2ax-3a(a<0)经过点A、B、D,且B为抛物线的顶点.
①写出顶点B的坐标(用a的代数式表示)______.
②求抛物线的解析式.
③在x轴下方的抛物线上是否存在这样的点P:过点P做PN⊥x轴于N,使得△PAN与△OAD相似?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=ax2+bx+c(a≠0)过点A(1,-3),B(3,-3),C(-1,5),顶点为M点.
(1)求该抛物线的解析式.
(2)试判断抛物线上是否存在一点P,使∠POM=90°.若不存在,说明理由;若存在,求出P点的坐标.
(3)试判断抛物线上是否存在一点K,使∠OMK=90°,若不存在,说明理由;若存在,求出K点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=x2+4x+3交x轴于A、B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为(-1,0).
(1)求抛物线的对称轴及点A的坐标;
(2)在平面直角坐标系xoy中是否存在点P,与A、B、C三点构成一个平行四边形?若存在,请写出点P的坐标;若不存在,请说明理由;
(3)连接CA与抛物线的对称轴交于点D,在抛物线上是否存在点M,使得直线CM把四边形DEOC分成面积相等的两部分?若存在,请求出直线CM的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx(a>0)与双曲线y=
k
x
相交于点A,B.已知点B的坐标为(-2,-2),点A在第一象限内,且tan∠AOx=4.过点A作直线ACx轴,交抛物线于另一点C.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,某地一城墙门洞呈抛物线形,已知门洞的地面宽度AB=12米,两侧距地面5米高C、D处各安装一盏路灯,两灯间的水平距离CD=8米,
(1)求这个门洞的高度______;
(2)现有体宽均约为0.5水,身高约为1.6米的20名同学想要手挽手成一排横向通过该城门,请你测算,他们能否通过?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为xm.
(1)要使鸡场面积最大,鸡场的长度应为多少m?
(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?
比较(1)(2)的结果,你能得到什么结论?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

用长8m的铝合金条制成如图形状的矩形窗框,使窗户的透光面积最大,那么这个窗户的最大透光面积是(  )
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,矩形的窗户分成上、下两部分,用9米长的塑钢制作这个窗户的窗框(包括中间档),设窗宽x(米),则窗的面积y(平方米)用x表示的函数关系式为______;要使制作的窗户面积最大,那么窗户的高是______米,窗户的最大面积是______平方米.

查看答案和解析>>

同步练习册答案