精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,抛物线数学公式与y轴交于点C,与x轴交于点A、B,(点A在点B的左侧)且满足OC=4OA.设抛物线的对称轴与x轴交于点M:
(1)求抛物线的解析式及点M的坐标;
(2)联接CM,点Q是射线CM上的一个动点,当△QMB与△COM相似时,求直线AQ的解析式.

解:(1)令x=0,则y=4,
∴点C(0,4),
OC=4,
∵OC=4OA,
∴OA=1,
∴点A(-1,0),
把点A坐标代入抛物线y=-x2+mx+4得,-×(-1)2+m×(-1)+4=0,
解得m=
∴抛物线解析式为y=-x2+x+4,
∵抛物线的对称轴为直线x=-=2,
∴点M的坐标为(2,0);

(2)∵OM=2,OC=4,
∴CM==2
令y=0,则-x2+x+4=0,
整理得x2-4x-5=0,
解得x1=-1,x2=5,
∴点B的坐标为(5,0),
∴OB=5,
∴BM=OB-OM=5-2=3,
如图,①∠BQM=90°时,△COM和△BQM相似,
=
=
解得BQ=
过点Q作QD⊥x轴于D,
则BD=BQ•cos∠QBM=×=,QD=BQ•sin∠QBM=×=
∴OD=OB-BD=5-=
∴点Q的坐标为(,-),
设直线AQ的解析式为y=kx+b(k≠0),

解得
∴直线AQ的解析式为y=-x-

②∠MBQ=90°时,△COM和△QBM相似,
=
=
解得BQ=6,
∴点Q的坐标为(5,-6),
设直线AQ的解析式为y=kx+b(k≠0),

解得
∴直线AQ的解析式为y=-x-1;
综上所述,当△QMB与△COM相似时,求直线AQ的解析式为y=-x-或y=-x-1.
分析:(1)令x=0求出点C的坐标,再求出OA的长度,然后写出点A的坐标,代入抛物线求出m的值,即可得解,再利用对称轴解析式求出点M的坐标即可;
(2)求出OM的长,再利用勾股定理列式求出CM,令y=0,解关于x的一元二次方程求出点B的坐标,得到OB的长度,再求出BM,然后分①∠BQM=90°时,△COM和△BQM相似,利用相似三角形对应边成比例列式求出BQ,过点Q作QD⊥x轴于D,解直角三角形求出BD、QD,然后求出OD,从而写出点Q的坐标,再利用待定系数法求一次函数解析式解答;②∠MBQ=90°时,△COM和△QBM相似,利用相似三角形对应边成比例列式求出BQ,再写出点Q的坐标,然后利用待定系数法求一次函数解析式解答.
点评:本题是二次函数综合题型,主要利用了抛物线与坐标轴的交点坐标的求法,待定系数法求二次函数解析式,待定系数法求一次函数解析式,相似三角形的性质,解直角三角形,难点在于(2)要分情况讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•浦江县模拟)已知:如图,抛物线与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0),点B的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(3)若平行于x轴的动直线 与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

(1)写出直线的解析式.

(2)求的面积.

(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线轴交于点、点,与直线相交于点、点,直线轴交于点

(1)求直线的解析式;
(2)求的面积;
(3)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

查看答案和解析>>

科目:初中数学 来源:2011-2012学年北京师大附中九年级上学期期中考试数学卷 题型:解答题

 已知:如图,抛物线轴交于点,点,与直线相交于点,点,直线轴交于点

1.(1)求的面积.

2.(2)若点在线段上以每秒1个单位长度的速度从运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从运动.设运动时间为秒,请写出的面积的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?

 

查看答案和解析>>

科目:初中数学 来源:2013届河南省周口市初一下学期第九章一元一次不等式组检测题 题型:解答题

已知:如图,抛物线轴交于点,与轴交于两点,点的坐标为

(1)求抛物线的解析式及顶点的坐标;

(2)设点是在第一象限内抛物线上的一个动点,求使与四边形面积相等的四边形的点的坐标;

(3)求的面积.

 

查看答案和解析>>

同步练习册答案