精英家教网 > 初中数学 > 题目详情
14、如图,AD是△ABC中BC边上的中线,若AB=2,AC=4,则AD的取值范围是
1<AD<3
分析:延长AD到E,使AD=DE,连接CE,则可得△ABD≌△ECD,得出AB=CE,在△ACE中,由三角形三边关系,即可求解结论.
解答:解:延长AD到E,使AD=DE,连接CE,如图,

∵AD是△ABC中BC边上的中线,
∴BD=CD,又AD=DE,∠ADB=∠CDE,
∴△ABD≌△ECD,
∴AB=CE,
在△ACE中,AC-CE<AE<AC+CE,即AC-AB<AE<AC+AB,
4-2<AE<4+2,即2<AE<6,
∴1<AD<3.
故此题的答案为:1<AD<3.
点评:本题主要考查了全等三角形的判定及性质以及三角形三边关系问题,能够熟练运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案