精英家教网 > 初中数学 > 题目详情
已知,如果y是x的正比例函数,则m的值为_________
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC为斜边向形外作等腰直角三角形,其面积分别是S1、S2、S3,且S1+S3=4S2,如果AB=2010,那么则CD=
 

精英家教网
(2)已知a,b是正整数,且满足2 ( 
15
a
+
15
b
  )
也是整数,请写出所有满足条件的有序数对(a,b).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:Rt△ABC斜边上的高为2.4,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合,直角顶点C落在y轴正半轴上,点A的坐标为(-1.8,0).
(1)求点B的坐标和经过点A、B、C的抛物线的关系式;
(2)如图①,点M为线段AB上的一个动点(不与点A、B重合),MN∥AC,交线段BC于点N,MP∥BC,交线段AC于点P,连接PN,△MNP是否有最大面积?若有,求出△MNP的最大面积;若没有,请说明理由;
(3)如图②,直线l是经过点C且平行于x轴的一条直线,如果△ABC的顶点C在直线l上向右平移m,(2)中的其它条件不变,(2)中的结论还成立吗?请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线数学公式(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.

(1)点B的坐标为______,点C的坐标为______(用含b的代数式表示);
(2)若b=8,请你在抛物线上找点P,使得△PAC是直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你探索,在(1)的结论下,在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏苏州卷)数学(带解析) 题型:解答题

如图,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
【小题1】点B的坐标为 ▲ ,点C的坐标为 ▲ (用含b的代数式表示);
【小题2】请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
【小题3】请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(江苏苏州卷)数学(解析版) 题型:解答题

如图,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.

1.点B的坐标为  ▲  ,点C的坐标为  ▲  (用含b的代数式表示);

2.请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;

3.请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案