精英家教网 > 初中数学 > 题目详情
如果a2-b2=12,-a+b=-4,求a+b。
解:a2-b2=(a-b)(a+b)=12,
∵-a+b=-4,
∴a-b=4,
∴a+b=3。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果a-b=2,a-c=
1
2
,那么a2+b2+c2-ab-ac-bc等于(  )
A、
13
4
B、
13
8
C、
13
2
D、不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

如果实数a、b、c满足a+2b+3c=12,且a2+b2+c2=ab+ac+bc,则代数值a+b2+c3的值为
14
14

查看答案和解析>>

科目:初中数学 来源: 题型:

我们已经知道了一些特殊的勾股数,如三个连续整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;由此发现勾股数的正整数倍仍然是勾股数.
(1)如果a、b、c是一组勾股数,即满足a2+b2=c2,求证:ka、kb、kc(k为正整数)也是一组勾股数.
(2)另外利用一些构成勾股数的公式也可以写出许多勾股数,如
①公式a=m2-n2,b=2mn,c=m2+n2(m、n为整数,m>n,m>1)
②世界上第一次给出的勾股数的公式,被收集在《九章算术》中a=
1
2
(m2-n2)
,b=mn,c=
1
2
(m2+n2)
(m、n为正整数,m>n)
③公元前427-公元前347,由柏拉图提出的公式a=n2-1,b=2n,c=n2+1(n>1,且n为整数)
④毕达哥拉斯学派提出的公式a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数),请你在上述的四个公式中选择一种加以证明,满足公式的a、b、c是一组勾股数
(3)请根据你在(2)中所选的公式写出一组勾股数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料,并回答问题.
画一个直角三角形,使它的两条直角边分别为5和12,那么我们可以量得直角三角形的斜边长为13,并且52+122=132.事实上,在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方.如果直角三角形中,两直角边长分别为a、b,斜边长为c,则a2+b2=c2,这个结论就是著名的勾股定理.
请利用这个结论,完成下面的活动:
(1)一个直角三角形的两条直角边分别为6、8,那么这个直角三角形斜边长为
10
10

(2)满足勾股定理方程a2+b2=c2的正整数组(a,b,c)叫勾股数组.例如(3,4,5)就是一组勾股数组.观察下列几组勾股数
①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
请你写出有以上规律的第⑤组勾股数:
11,60,61
11,60,61

(3)如图,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的长度.

(4)如图,点A在数轴上表示的数是
-
5
-
5
,请用类似的方法在下图数轴上画出表示数
3
的B点(保留作图痕迹).

查看答案和解析>>

同步练习册答案