精英家教网 > 初中数学 > 题目详情
如图:在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,与两坐标轴交点为点A精英家教网和点C,与抛物线y=ax2+ax+b交于点B,其中点A(0,2),点B(-3,1),抛物线与y轴交点D(0,-2).
(1)求抛物线的解析式;
(2)求点C的坐标;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.
分析:(1)将B、D两点坐标代入抛物线的解析式中,即可求出待定系数a、b的值,也就求得了抛物线的解析式;
(2)过B作BE⊥x轴于E,利用三角形全等解答即可;
(3)延长BC到P,使CP=BC,连接AP,利用等腰直角三角形的性质与全等三角形的判定与性质解答即可.
解答:解:(1)将(-3,1),(0,-2)代入得:
1=9a-3a+b
-2=b
解得
a=
1
2
b=-2

∴抛物线的解析式为:y=
1
2
x2+
1
2
x-2


(2)过B作BE⊥x轴于E,则E(-3,0),
精英家教网易证△BEC≌△COA,
∴BE=AO=2,EB=CO=1,
∴C(-1,0);

(3)延长BC到P,使CP=BC,连接AP,
则△ACP为以AC为直角边的等腰直角三角形
过P作PF⊥x轴于F,易证△BEC≌△PFC,精英家教网
∴CF=CE=2PF=BE=1,
∴P(1,-1),
将(1,-1)代入抛物线的解析式满足;
若∠CAP=90°,AC=AP,
则四边形ABCP为平行四边形,
过P作PG⊥x轴于G,易证△PGA≌△CEB,
∴PG=2AG=1,
∴P(2,1)在抛物线上,
∴存在P(1,-1),(2,1)满足条件.
点评:此题考查了等腰直角三角形的性质和判定、全等三角形的判定和性质、二次函数解析式的确定、函数图象交点等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案