精英家教网 > 初中数学 > 题目详情
10.已知在△ABC中,∠B=90°,以AB上的一点O为圆心,以OA为半径的圆交AC于点D,交AB于点E.
(1)求证:AC•AD=AB•AE;
(2)如果BD是⊙O的切线,D是切点,E是OB的中点,当BC=2时,求AC的长.

分析 (1)连接DE,根据圆周角定理求得∠ADE=90°,得出∠ADE=∠ABC,进而证得△ADE∽△ABC,根据相似三角形对应边成比例即可求得结论;
(2)连接OD,根据切线的性质求得OD⊥BD,在RT△OBD中,根据已知求得∠OBD=30°,进而求得∠BAC=30°,根据30°的直角三角形的性质即可求得AC的长.

解答 (1)证明:连接DE,
∵AE是直径,
∴∠ADE=90°,
∴∠ADE=∠ABC,
∵∠DAE=∠BAC,
∴△ADE∽△ABC,
∴$\frac{AD}{AB}$=$\frac{AE}{AC}$,
∴AC•AD=AB•AE;
(2)解:连接OD,
∵BD是⊙O的切线,
∴OD⊥BD,
在RT△OBD中,OE=BE=OD,
∴OB=2OD,
∴∠OBD=30°,
同理∠BAC=30°,
在RT△ABC中,AC=2BC=2×2=4.

点评 本题考查了圆周角定理的应用,三角形相似的判定和性质,切线的性质,30°的直角三角形的性质等,作出辅助线构建直角三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

20.甲、乙、丙、丁四个人一起讨论一个一元一次不等式组,他们各说出该不等式组的一个性质:
甲:这个不等式组的解在-2与5之间取值(包括-2与5);
乙:这个不等式组没有小于3的解;
丙:有一个不等式的解为x>-1;
丁:不等式-3x+9>-3的解为x<4.
若这四人中恰有三个人的说法是正确的,则该不等式组为$\left\{\begin{array}{l}{x+1>0}\\{-3x+9>-3}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.把不等式x+2≤0的解集在数轴上表示出来,则正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形,投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是(  )
A.1B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.
理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;
(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;
(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=$\frac{12}{5}$,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,下列说法错误的是(  )
A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.△CDF可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转的角度为90°.

查看答案和解析>>

同步练习册答案