精英家教网 > 初中数学 > 题目详情

(1)已知△ABC为正三角形,点M是BC上一点,点N是AC上一点,AM、BN相交于点Q,∠BAM=∠NBC,猜想∠BQM等于多少度,并证明你的猜想.
(2)将(1)中的“正△ABC”分别改为正方形ABCD、正五边形ABCDE、正六边形ABCDEF、正n边形ABCD…X,“点N是AC上一点”改为点N是CD上一点,其余条件不变,分别推断出∠BQM等于多少度,将结论填入下表:
正多边形正方形正五边形正六边形正n边形
∠BQM的度数________________________

解:(1)∠BQM=60度.
在△ABM和△BCN中
∴△ABM≌△BCN.
∴∠BAM=∠CBN.
∴∠BQM=∠BAQ+∠ABQ=∠CBN+∠ABN=∠ABC=60°.

(2)理由同(1):正方形∠BQM=90°,正五边形∠BQM=108°,正六边形∠BQM=120°,正n边形∠BQM=
分析:(1)从图中不难得出△ABM≌△BCN,利用对应角相等,外角和定理可求∠BQM=60度;
(2)本题是变式拓展题,需要从证明△ABM≌△BCN中寻找解题方法.
点评:本题综合考查全等三角形、等边三角形和正多边形的有关知识.注意对三角形全等性质的运用及学会对问题的拓展.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,已知△ABC为等边三角形,M为三角形外任意一点.
(1)请你借助旋转知识说明AM≤BM+CM;
(2)线段AM是否存在最大值?若存在,请指出存在的条件;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知△ABC为钝角三角形,其最大边AC上有一点P(点P与点A,C不重合),过点P作直线l,使直线l截△ABC所得的三角形与原三角形相似,
3或2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC为等腰三角形,AB=AC,△EBD通过旋转能与△ABC重合.
(1)旋转中心是
 

(2)如果旋转角恰好是△ABC底角度数的
12
,且AD=BD,那么旋转角的大小是
 
度;
(3)△BDC是
 
三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)已知△ABC为正三角形,点M是BC上一点,点N是AC上一点,AM、BN相交于点Q,∠BAM=∠NBC,猜想∠BQM等于多少度,并证明你的猜想.
(2)将(1)中的“正△ABC”分别改为正方形ABCD、正五边形ABCDE、正六边形ABCDEF、正n边形ABCD…X,“点N是AC上一点”改为点N是CD上一点,其余条件不变,分别推断出∠BQM等于多少度,将结论填入下表:
正多边形 正方形 正五边形 正六边形 正n边形
∠BQM的度数
 
 
 
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•保定一模)如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于(  )

查看答案和解析>>

同步练习册答案