精英家教网 > 初中数学 > 题目详情
如图,点P为正方形ABCD的边CD上一点,BP的垂直平分线EF分别交BC、AD于E、F两点,GP⊥EP交AD于点G,连接BG交EF于点 H,下列结论:①BP=EF;②∠FHG=45°;③以BA为半径⊙B与GP相切;④若G为AD的中点,则DP=2CP.其中正确结论的序号是(  )
分析:先作NF⊥BC于N,根据正方形的性质和垂直平分线的性质证明△BCP≌△FNE就可以得出BP=EF,作BM⊥PG于M,GP⊥EP,通过证明两次三角形全等就可以得出∠PBG=45°,从而求出∠FHG=45°,由切线的判定定理就可以求出以BA为半径⊙B与GP相切,当G为AD的中点时,设AG=GD=x,CP=y,则GM=x,PM=y,PD=2x-y,运用勾股定理就可以求出DP与CP的关系.
解答:解:作NF⊥BC于N,
∴∠FNE=90°.
∵四边形ABCD是正方形,
∴∠ABC=∠BCD=∠ADC=∠BAD=90°,AB=BC=CD=DA.
∴NF=AB,
∴NF=CB.
∵EF垂直平分BP,
∴∠2=∠3,∠2+∠NEF=90°.
∵∠1+∠NEF=90°,
∴∠1=∠2,
在△BCP和△FNE中,
∠2=∠1
BC=FN
∠C=∠FNE

∴△BCP≌△FNE(ASA),
∴BP=EF;故①正确;
作BM⊥PG于M,GP⊥EP,
∴BM∥EP,∠BMP=∠BMG=90°
∴∠3=∠5,∠BMP=∠C.
∴∠2=∠5
在△BPC和△BPM中
∠C=∠BMP
∠2=∠5
BP=BP

∴△BPC≌△BPM(AAS),
∴BC=AB=BM,
∴以BA为半径⊙B与GP相切.故③正确;
在Rt△BMG和Rt△BAG中,
BG=BG
BM=AB

∴Rt△BMG≌Rt△BAG(HL),
∴∠6=∠7.
∵∠2+∠5+∠6+∠7=90°,
∴2∠5+2∠6=90°,
∴∠5+∠6=45°
即∠PBG=45°.
∴∠8=45°.
∴∠FHG=45°故②正确;
当G为AD的中点时,设AG=GD=x,CP=y,则GM=x,PM=y,PD=2x-y,
在Rt△PGD中由勾股定理,得
(x+y)2=x2+(2x-y)2
∴y=
2
3
x,
即CP=
2
3
x
∴PD=2x-
2
3
x=
4
3
x,
∴DP=2CP故④正确.
∴正确的有:①②③④.
故选:A.
点评:此题主要考查了圆的综合应用以及垂直平分线的性质、正方形的性质、全等三角形的判定及性质的而运用、圆的切线的判定方法的运用、勾股定理的性质的运用等知识,在解答中运用作辅助线制造全等三角形是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点F为正方形内一点,在正方形外有一点E,满足∠ABF=∠CBE,BF=BE.
(1)求证:△ABF≌△CBE;
(2)连接EF,试判断△BEF的形状,并证明你的结论.
(3)当CF:BF=1:2,∠BFC=135°时,求cos∠FCE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,正方形OABC的面积是16.
(1)求正方形OABC的对角线的交点D的坐标;
精英家教网
(2)直线y=2x+8交x轴于E,交y轴于F,它沿x轴正方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的
值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;
精英家教网
(3)如图,点P为正方形OABC的对角线AC上的动点(端点A、C除外),PM⊥PO,交直线AB于M,给出下列两个结论:①
PC
BM
的值不变;②
PC
AM
的值不变;其中有且只有一个结论是正确的,请你选出正确的结论,予以证明并求其值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论为(  )  
①BF=2OH;②∠CHF=45°;③BC=4GH;④DH2=HE•HB.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点F为正方形ABCD的边CD的中点,E为BC上一点,M为EF上一点,且D、M关于AF对称,B、M关于AE对称,∠CFE的平分线交AE的延长线于G,交BC于N,连CG,下列结论:①△AFG为等腰直角三角形;②CG=2
2
CN;③S△CEF=S△ABE,其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点E为正方形ABCD的边CD上一点,AB=10,AE=4.△DAE旋转后能与△DCF重合.
(1)旋转中心是点
D
D
,旋转了
90
90
度.
(2)连接EF,则△DEF是
等腰直角
等腰直角
三角形.
(3)四边形DEBF的周长和面积分别是
20+4
29
20+4
29
100
100

查看答案和解析>>

同步练习册答案