精英家教网 > 初中数学 > 题目详情
(2007•泰州)如图,在四边形ABCD中,点E,F分别是AD,BC的中点,G,H分别是BD,AC的中点,AB,CD满足什么条件时,四边形EGFH是菱形?请证明你的结论.

【答案】分析:本题可根据菱形的定义来求解.E、G分别是AD,BD的中点,那么EG就是三角形ADB的中位线,同理,HF是三角形ABC的中位线,因此EG、HF同时平行且相等于AB,因此EG∥=HF.
因此四边形EHFG是平行四边形,E、H是AD,AC的中点,那么EH=CD,要想证明EHFG是菱形,那么就需证明EG=EH,那么就需要AB、CD满足AB=CD的条件.
解答:解:当AB=CD时,四边形EGFH是菱形.
证明:∵点E,G分别是AD,BD的中点,
∴EGAB,同理HFAB,∴EGHF.
∴四边形EGFH是平行四边形.
∵EG=AB,又可同理证得EH=CD,
∵AB=CD,∴EG=EH,
∴四边形EGFH是菱形.
点评:本题考查了菱形的判定,运用的是菱形的定义:一组邻边相等的平行四边形是菱形.
练习册系列答案
相关习题

科目:初中数学 来源:2007年全国中考数学试题汇编《二次函数》(06)(解析版) 题型:解答题

(2007•泰州)如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学模拟试卷冀教版(解析版) 题型:解答题

(2007•泰州)如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省温州市永嘉县二模试卷(解析版) 题型:解答题

(2007•泰州)如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年江苏省泰州市中考数学试卷(解析版) 题型:解答题

(2007•泰州)如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.

查看答案和解析>>

科目:初中数学 来源:2007年江苏省泰州市中考数学试卷(解析版) 题型:填空题

(2007•泰州)如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有    个.

查看答案和解析>>

同步练习册答案