∵DD=OC=1=
OA,
∴D是OA的中点,
∵在△CME和△ADE中
,
∴△CME≌△ADE,
∴CM=AD=2-1=1,
∵BC∥OA,∠COD=90°,
∴四边形CMDO是矩形,
∴MD⊥OD,MD⊥CB,
∴MD切⊙O于D,
∵得HG切⊙O于F,E(1,
),
∴可设CH=HF=x,FE=ED=
=ME,
在Rt△MHE中,有MH2+ME2=HE2
即(1-x)2+(
)2=(
+x)2,
解得x=
,
∴H(
,1),OG=2-
=
,
又∵G(
,0),
设直线GH的解析式是:y=kx+b,
把G、H的坐
标代入得:0=b,且1=
k+b,
解得:k=-
,b=
,
∴直线GH的函数关系式为y=-
;
(3)解:连接BG,
∵在△OCH和△BAG中
,
∴△OCH≌△BAG,
∴∠CHO=∠AGB,
∵∠HCO=90°,
∴HC切⊙O于C,HG切⊙O于F,
∴OH平分∠CHF,
∴∠CHO=∠FHO=∠BGA,
∵△CHE≌△AGE,
∴HE=GE,
在△HOE和△GBE中
,
∴△HOE≌△GBE,
∴∠OHE=∠BGE,
∵∠CHO=∠FHO=∠BGA,
∴∠BGA=∠BGE,即BG平分∠FGA,
∵⊙P与HG、GA、AB都相切,
∴圆心P必在BG上,过P做PN⊥GA,垂足为N,
∴△GPN∽△GBA,
∴
,
设半径为r,
=
,
解得:r=
,
答:⊙P的半径是![]()
.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
查看答案和解析>>
科目:初中数学 来源:同步轻松练习 八年级 数学 上 题型:059
学校阅览室有能坐4人的方桌,如果多于4人,就把方桌拼成一行,2张方桌拼成一行能坐6人(如图)
(1)按照这种规定填写下表:
(2)根据表中的数据,将s作为纵坐标,n作为横坐标,在如图所示的平面直角坐标系中找出相应各点.
(3)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数图象上,求出该函数的解析式,并利用你探求的结果,求出当n=10时,s的值.
查看答案和解析>>
科目:初中数学 来源:2013-2014学年北京海淀区九年级第一学期期中测评数学试卷(解析版) 题型:解答题
阅读下面的材料:
小明在研究中心对称问题时发现:
如图1,当点
为旋转中心时,点
绕着点
旋转180°得到
点,点
再绕着点
旋转180°得到
点,这时点
与点
重合.
如图2,当点
、
为旋转中心时,点
绕着点
旋转180°得到
点,点
绕着点
旋转180°得到
点,点
绕着点
旋转180°得到
点,点
绕着点
旋转180°得到
点,小明发现P、
两点关于点
中心对称.
![]()
![]()
![]()
(1)请在图2中画出点
、
,
小明在证明P、
两点关于点
中心对称时,除了说明P、
、
三点共线之外,还需证明;
(2)如图3,在平面直角坐标系xOy中,当
、
、
为旋转中心时,点
绕着点
旋转180°得到
点;点
绕着点
旋转180°得到
点;点
绕着点
旋转180°得到
点;点
绕着点
旋转180°得到点
. 继续如此操作若干次得到点
,则点
的坐标为(),点
的坐为.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com