精英家教网 > 初中数学 > 题目详情

如图,△ABC是等边三角形,P是三角形内任一点,PD∥AB,PE∥BC,PF∥AC.求证:PD+PE+PF=AB.

证明:延长EP交AB于点G,延长DP交AC与点H,
∵PD∥AB,PE∥BC,PF∥AC,
∴四边形AFPH、四边形PDBG均为平行四边形,
∴PD=BG,PH=AF.
又∵△ABC为等边三角形,
∴△FGP和△HPE也是等边三角形,
∴PE=PH=AF,PF=GF,
∴PE+PD+PF=AF+BG+FG=AB.
分析:因为要求证明PD+PE+PF=AB,而PD、PE、PF并不在同一直线上,因此和AB无法进行比较,必须把三者转移到AB上,方可解答.
点评:本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,⊙O过点B,C,且与BA,CA的延长线分别交于点D,E,弦DF精英家教网∥AC,EF的延长线交BC的延长线于点G.
(1)求证:△BEF是等边三角形;
(2)若BA=4,CG=2,求BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图,△ABC是等边三角形,过AB边上一点D作BC的平行线交AC于E,则△ADE的三个内角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是等边三角形,AB=4cm,则BC边上的高AD等于
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,将△ABD绕点A点逆时针方向旋转后到达△ACE的位置,那么旋转角的度数是
60°
60°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连结BD并延长与CE交于点E.
(1)直接写出∠ECF的度数等于
60
60
°;
(2)求证:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的长.

查看答案和解析>>

同步练习册答案