精英家教网 > 初中数学 > 题目详情

已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧CD上不同于点C的任意一点,则∠BPC的度数是(   )

A.45°             B.60°             C.75°             D.90°

 

【答案】

A

【解析】

试题分析:连接OB、OC,根据圆内接正方形的性质可得∠BOC的度数,再根据圆周角定理即可求得结果.

连接OB、OC

∵四边形ABCD是⊙O的内接正方形

∴∠BOC=90°

∴∠BPC=45°

故选A.

考点:圆内接正方形的性质,圆周角定理

点评:辅助线问题是初中数学的难点,能否根据题意准确作出适当的辅助线很能反映一个学生的对图形的理解能力,因而是中考的热点,尤其在压轴题中比较常见,需特别注意.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,四边形ABCD中∠B=90°,AB=9,BC=12,AD=8,CD=17.
试求:(1)AC的长;(2)四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,四边形ABCD内接于⊙O,且AB∥CD,AD∥BC,
求证:四边形ABCD是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,且BE=DF
(1)求证:CE=CF;
(2)求∠CEF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD中,BC=CD=10,AB=15,AB⊥BC,CD⊥BC,若把四边形ABCD绕直线AB旋转一周,则所得几何体的表面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,四边形ABCD及一点P.
求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.

查看答案和解析>>

同步练习册答案