精英家教网 > 初中数学 > 题目详情

已知:抛物线经过A(2,0)、B(8,0)、C(0,数学公式
(1)求:抛物线的解析式;
(2)设抛物线的顶点为P,把△APB翻折,使点P落在线段AB上(不与A、B重合),记作P′,折痕为EF,设AP′=x,PE=y,求y关于x的函数关系式,并写出定义域;
(3)当点P′在线段AB上运动但不与A、B重合时,能否使△EFP′的一边与x轴垂直?若能,请求出此时点P′的坐标;若不能,请你说明理由.

解:(1)设抛物线的解析式为y=a(x-2)(x-8)
代入得a=
∴y=(x-2)(x-8)
即y=

(2)顶点P(5,-3
AP=AB=BP=6
∴∠PAP′=60°
作P′G⊥AP于G,
则AG=x,P′G=x
又P′E=PE=y,EG=6-x-y
在Rt△P′EG中,
∴y=(0<x<6)

(3)①若EP′⊥x轴,则6-y=2x,6-=2x,
x1=12-6,x2=12+6(舍去)
∴P′(,0)
②若FP′⊥x轴,则6-y=x,6-x,
x3=6-6,x4=-6-6(舍去)
∴P′(6-6,0)
③若EF⊥x轴,显然不可能.
∴P′(,0)或P′(6-6,0)(+1分)
分析:(1)设抛物线的解析式为y=a(x-2)(x-8)将C点坐标代入即可求得抛物线的解析式;
(2)先求出P点坐标,在Rt△P′EG中,根据勾股定理便可求出y关于x的函数关系式;
(3)分别令EP′⊥x轴、FP′⊥x轴、EF⊥x轴进行分类讨论,便可得出满足题意得P点坐标.
点评:本题是二次函数的综合题,其中涉及到的知识点有抛物线的公式的求法和勾股定理等知识点,是各地中考的热点和难点,解题时注意数形结合和分类讨论等数学思想的运用,同学们要加强训练,属于中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线经过点A(-1,0),B(0,3),C(2,3)三点,顶点为D,精英家教网且与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)求三角形BDE的面积;
(3)作∠BDE的平分线交线段BE于点F,求BF:FE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系xoy中,Rt△AOB的直角边OB,OA分别在x轴上和y轴上,其中OA=2精英家教网,OB=4,现将Rt△AOB绕着直角顶点O按逆时针方向旋转90°得到△COD,已知一抛物线经过C、D、B三点.
(1)求这条抛物线的解析式;
(2)连接DB,P是线段BC上一动点(P不与B、C重合),过点P作PE∥BD交CD于E,则当△DEP面积最大时,求PE的解析式;
(3)作点D关于此抛物线对称轴的对称点F,连接CF交对称轴于点M,抛物线上一动点R,x轴上一动点Q,则在抛物线上是否存在点R,x轴上是否存在点Q,使得以C、M、Q、R为顶点的四边形是平行四边形?如果存在,求出Q点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线经过点A(-1,7)、B(2,1)和点C(0,1).
(1)求这条抛物线的解析式;
(2)求该抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知某抛物线经过点(2,3)和(4,3),则其对称轴是直线
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:抛物线经过A(2,0)、B(8,0)、C(0,
16
3
3

(1)求:抛物线的解析式;
(2)设抛物线的顶点为P,把△APB翻折,使点P落在线段AB上(不与A、B重合),记作P′,折痕为EF,设AP′=x,PE=y,求y关于x的函数关系式,并写出定义域;
(3)当点P′在线段AB上运动但不与A、B重合时,能否使△EFP′的一边与x轴垂直?若能,请求出此时点P′的坐标;若不能,请你说明理由.

查看答案和解析>>

同步练习册答案