如图,已知正方形ABCD.
(1)请用直尺和圆规,作出正方形ABCD绕点A逆时针旋转45°后得到的正方形AB′C′D′(其中B′,C′,D′分别是点B,C,D的像)(要求保留作图痕迹,不必写出作法);
(2)设CD与B′C′相交于O点,求证:OD=OB′;
(3)若正方形的边长为
,求两个正方形的重叠部分(四边形AB′OD)的面积.
![]()
解:(1)
(2)连结B′D.
∵正方形AB′C′D′由正方形ABCD旋转得到,∴AD=AB′,∠ADO=∠AB′O=90°,
∴∠ADB′=∠AB′D,∴∠ODB′=∠OB′D,∴OD=OB′.
(3)连结AC.∵正方形ABCD,∴∠CAB=45°.
由题意知∠BAB′=45°,∴∠CAB=∠BAB′,
即B′在AC上,∴△OB′C是等腰直角三角形.
设OD=OB′=x,则OC=
.
∵CD=
,∴
,∴x=1.
∴S四边形AB′OD=S△ACD-S△B′CO=
.
【解析】(1)利用旋转的特征即可作出图形;
(2)根据旋转的特征,可得AD=AB′,∠ADO=∠AB′O=90°,根据等边对等角得到∠ADB′=∠AB′D,所以∠ODB′=∠OB′D,再由等角对等边得到OD=OB′.
(3)先说明△OB′C是等腰直角三角形,再根据勾股定理可以求得OB′的长,
所以S四边形AB′OD=S△ACD-S△B′CO=![]()
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
2a+
| ||
| 2 |
2a-
| ||
| 2 |
2a+
| ||
| 2 |
2a-
| ||
| 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com