精英家教网 > 初中数学 > 题目详情
10.如图,△ABC是等边三角形,AB=2cm,动点P、Q分别从点B、C同时出发,运动速度均为2cm/s.点P从B点出发,沿B→C运动,到点C停止,点Q从点C出发,沿C→B运动,到点B停止,连接AP、AQ,点P关于直线AB的对称点为D,连接BD、DQ,设点P的运动时间为t(s).
(1)当PQ=BD时,t=$\frac{1}{3}$或1s;
(2)求证:△ACP≌△ABQ;
(3)求证:△ADQ是等边三角形.

分析 (1)根据轴对称图形的性质证明BD=BP,然后求出PQ的长,由PQ=BD即可求出t的值.
(2)根据判定定理(SAS)证明即可.
(3)只需证明△ABP≌△ACQ、△ABD≌△ABP,再根据全等图形的性质即可证明△ADQ是等边三角形

解答 (1)解:由题意可知:BP=2t,BQ=2t
∴PQ=|2-4t|
∵点P关于直线AB的对称点为D,
∴BP=BD
∴当PQ=BD时,有:|2-4t|=2t,t=$\frac{1}{3}$或1;
即:当PQ=BD时,t=$\frac{1}{3}$或1,
故答案为:$\frac{1}{3}$或1.
(2)证明:∵△ABC是等边三角形,
∴AB=AC,∠ABQ=∠ACP=60°
在△ACP与△ABQ中,$\left\{\begin{array}{l}{AB=AC}\\{∠ABQ=∠ACP}\\{BQ=CP}\end{array}\right.$,
∴△ACP≌△ABQ(SAS)
(3)证明:如图:

在△ABP与△ACQ中,$\left\{\begin{array}{l}{AB=AC}\\{∠ABP=∠ACQ}\\{BP=CQ}\end{array}\right.$,
∴△ABP≌△ACQ(SAS)
又点P关于直线AB的对称点为D,
∴BD=BP,∠ABD=∠ABP
∴在△ABD与△ABP中,$\left\{\begin{array}{l}{BD=BP}\\{∠ABD=∠ABP}\\{AB=AB}\end{array}\right.$,
∴△ABD≌△ABP(SAS)
∴△ACQ≌△ABD
∴∠1=∠3,AQ=AP=AD
∵∠1+∠BAQ=∠3+∠BAQ=60°
即:∠DAQ=60°.
∴△ADQ是等边三角形.

点评 本题是几何变换综合题,主要考查了等边三角形的性质,全等三角形的性质和判定,解题的关键是掌握轴对称图形的性质、全等三角形的性质、等边三角形的性质及其综合应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF⊥AC于F.求证:BE=CF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.
(3)AE=4,BD=10,求CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,平面直角坐标系中,抛物线y=x2-2x与x轴交与O、B两点,顶点为P,连接OP、BP,直线y=x-4与y轴交于点C,与x轴交于点D.

(1)直接写出点B坐标(2,0);判断△OBP的形状△OBP是等腰直角三角形;
(2)将抛物线向下平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP:
①当S△PCD=$\sqrt{2}$S△POC时,求平移后的抛物线的顶点坐标;
②在向下平移的过程中,试探究S△PCD和S△POD之间的数量关系;直接写出它们之间的数量关系及对应的m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,△ABC的中线BE、CF交于点O,直线AD∥BC,与CF的延长线交于点D,则S△AEF:S△AFD为(  )
A.1:2B.3:2C.2:3D.3:4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:如图,菱形ABCD周长为20,对角线AC、BD交于点O,sin∠BAC=$\frac{3}{5}$.
(1)求菱形ABCD的面积;
(2)动点P从点A出发,沿着射线AB运动,同时点Q从点B出发,沿着折线B-C-D向终点D运动,P、Q的速度均为1个单位每秒,当点Q到达终点D时,点P随之停止运动,运动时间t秒.设△PBQ面积为S,求S与t的函数关系式,并写出t的取值范围;
(3)在(2)的条件下,若仅将其中点Q的速度改为a个单位每秒,其它条件不变,在点P运动到某一位置时(不与B重合),恰有∠OPC=∠OBC,此时点Q未到终点,∠OQC+∠OBC=180°,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,直线AB与x轴交于点A(-6,0),与y轴交于B(0,6).

(1)求S△ABO
(2)D为OA延长线上一动点,以BD为直角边作等腰直角三角形BDE,连接EA,求直线EA与y轴交点F的坐标.
(3)如图②,点E为y轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段OA上一动点,试求OM+MN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,∠AOB=∠COD=90°,
(1)指出图中以点O为顶点的角中,互为补角的角并说明理由.
(2)若∠COB=$\frac{3}{7}$∠AOD,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,△ABC的三个顶点坐标分别为(0,2),(-1,0)和(3,0),动点P从原点O出发(点P不与原点O重合),沿x轴的正方向以每秒1个单位长度的速度匀速运动,过点P作直线l⊥x轴,设点P的运动时间为t(秒).
(1)操作:
①在图中画出△ABO关于y轴对称的图形(记为△A′B′O′);
②在图中画出△A′B′O′关于直线l对称的图形(记为△A″B″O″);
(2)猜想线段A″B″、AB的关系,并证明你的猜想;
(3)设△A″B″O″与△ABC重叠部分的面积为S(单位长度),求S与t的函数关系式,并写出t的取值范围.

查看答案和解析>>

同步练习册答案