精英家教网 > 初中数学 > 题目详情
如图,已知△ABC,以边BC为直径的圆与边AB交于点D,点E为弧BD的中点,AF为△ABC角平分线,且AF⊥EC.
(1)求证:AC与⊙O相切;
(2)若AC=6,BC=8,求EC的长.

【答案】分析:(1)连接BE,只要证得∠OAC=90°即可.
(2)根据相似三角形的判定得到△EBH∽△ECB,根据相似比即可求得EC的长.
解答:(1)证明:如图,连接BE,
∵AF是∠BAC的角平分线,AF⊥EC,
∴∠ACH=∠AHC.
∵∠BHE=∠AHC,
∴∠ACH=∠BHE.
∵E是的中点,
∴∠EBD=∠BCE.
∵BC是⊙O的直径,
∴∠BEC=90°.( 3分)
∴∠EBH+∠BHE=90°.
∴∠BCE+∠ACE=90°.
∴AC是⊙O的切线.(4分)

(2)解:在Rt△ABC中,
∵AC=6,BC=8,
∴AB=10.
又∵∠ACH=∠AHC,
∴AH=AC=6.
∴BH=AB-AH=10-6=4.(6分)
∵∠EBH=∠ECB,
∴△EBH∽△ECB.
==
在Rt△EBC中,
∵EC=2EB,BC=8,
∵EC2+EB2=BC2
∴EC=
点评:本题考查的是切线的性质,相似三角形的判定定理及勾股定理的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(-2,-2).
(1)请在图中作出△ABC关于直线x=-1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;
(2)求四边形ABED的面积.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.
(1)请说出AD=BE的理由;
(2)试说出△BCH≌△ACG的理由;
(3)试猜想:△CGH是什么特殊的三角形,并加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

17、(1)已知线段a,h,用直尺和圆规作等腰三角形ABC,底边BC=a,BC边上的高为h(要求尺规作图,不写作法和证明)
(2)如图,已知△ABC,请作出△ABC关于X轴对称的图形.并写出A、B、C关于X轴对称的点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,已知△ABC是锐角三角形,且∠A=50°,高BE、CF相交于点O,求∠BOC的度数.

查看答案和解析>>

同步练习册答案