精英家教网 > 初中数学 > 题目详情
如图,已知在⊙O的半径为6.D为弦BC的中点,A为BO延长线上一点,F为AC上一点.连BF交AD于E,BE=AC.
(1)若BC=5,求点O到BC的距离;
(2)求证:AF=EF.
分析:(1)连接OD,根据D是BC的中点可知OD⊥BC,在Rt△BOD中利用勾股定理即可求出OD的长;
(2)根据点D是BC的中点,延长AD到点G,得到△ADC≌△GDB,利用全等三角形的对应角相等,对应边相等进行等量代换,得到△AEF中的两个角相等,然后用等角对等边证明AE等于EF.
解答:解:(1)连接OD,
∵D为弦BC的中点,
∴OD⊥BC,BD=
1
2
BC=
1
2
×5=
5
2

在Rt△OBD中,
OD=
OB2-BD2
=
62-(
5
2
)
2
=
119
2


(2)延长AD到点G,使得DG=AD,连接BG,
∵BD=DC,
∴△ADC≌△GDB,
∴∠CAD=∠G,BG=AC
又∵BE=AC,
∴BE=BG,
∴∠BED=∠G,
∵∠BED=∠AEF,
∴∠AEF=∠CAD,
即:∠AEF=∠FAE,
∴AF=EF.
点评:本题考查的是垂径定理,勾股定理及全等三角形的判定与性质,根据题意作出辅助线,构造出直角三角形及全等三角形是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y精英家教网=
kx
图象与BC交于点D,与AB交于点E,其中D(1,3).
(1)求反比例函数的解析式及E点的坐标;
(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形ABCD的边BC在x轴上,矩形ABCD对角线的交点E的横坐标为m(m>0),且点A、E精英家教网和点N(1,2)都在函数y=
kx
的图象上.
(1)求k的值;
(2)求点A的坐标(用m表示);
(3)当满足上述条件的矩形ABCD为正方形时,请求出此时m的值;
(4)点F在y轴的正半轴上,且OF=OB,在(3)的条件下,是否线段BC上存在点P,使PD=PF,若存在,求出符合条件的点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,已知点A的坐标是(-
3
,0),点B的坐标是(3
3
,0),以AB为直径作⊙M,交y轴的负半轴于点C,交y正半轴于点D,连接AC、BC,过A、B、C三点作抛物线.
(1)求该抛物线的解析式;
(2)连接D M并延长交⊙M于点E,过点E作⊙M的切线分别交x轴、y轴于点F、G,求直线FG的解析式;
(3)在抛物线上是否存在这样的点P,使得以A、B、C、P为顶点的四边形是梯形?若存在,请直接写出所有满足条件的点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,抛物线y=-
23
x2+bx+c经过点A,B,交正x轴于点D,E是OC上的动点(不与C重合)连接EB,过B点作BF⊥BE交y轴与F
(1)求b,c的值及D点的坐标;
(2)求点E在OC上运动时,四边形OEBF的面积有怎样的规律性?并证明你的结论;
(3)连接EF,BD,设OE=m,△BEF与△BED的面积之差为S,问:当m为何值时S最小,并求出这个最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=
k
x
图象与BC交于点D,与AB交于点E,其中D(1,3).
(1)求反比例函数的解析式及E点的坐标;
(2)求直线DE的解析式;
(3)若矩形OABC对角线的交点为F (2,
3
2
)
,作FG⊥x轴交直线DE于点G.
①请判断点F是否在此反比例函数y=
k
x
的图象上,并说明理由;
②求FG的长度.

查看答案和解析>>

同步练习册答案