精英家教网 > 初中数学 > 题目详情
精英家教网正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM=
 
时,四边形ABCN的面积最大.
分析:设BM=x,则MC=4-x,当AM⊥MN时,利用互余关系可证△ABM∽△MCN,利用相似比求CN,根据梯形的面积公式表示四边形ABCN的面积,用二次函数的性质求面积的最大值.
解答:解:设BM=x,则MC=4-x,
∵∠AMN=90°,∠AMB+∠NMC=90°,∠NMC+∠MNC=90°,
∴∠AMB=90°-∠NMC=∠MNC,
∴△ABM∽△MCN,则
AB
MC
=
BM
CN
,即
4
4-x
=
x
CN

解得CN=
x(4-x)
4

∴S四边形ABCN=
1
2
×4×[4+
x(4-x)
4
]=-
1
2
x2+2x+8,
∵-
1
2
<0,
∴当x=-
b
2a
=-
2
2(- 
1
2
)
=2时,S四边形ABCN最大.
故答案为:2.
点评:本题考查了二次函数的性质的运用.关键是根据已知条件判断相似三角形,利用相似比求函数关系式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网附加题
如图所示,正方形ABCD的边长为7,AE=BF=CG=DH=3,甲、乙两只蚂蚁同时从A点出发,甲蚂蚁以每秒
3
5
的速度沿路线AE→EF→FG→GH→HE→EB→BC→CD→DA循环爬行;乙蚂蚁以每秒
4
5
的速度沿路线AH→HG→GF→FE→EH→HD→DC→CB→BA循环爬行.那么出发后两只蚂蚁在第
 
s第一次相遇.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD的边长为4,P为对角线AC上一点,且CP=3
2
,PE⊥PB交CD于点E,则PE=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

正方形ABCD的边长为4,P是BC上一动点,QP⊥AP交DC于Q,设PB=x,△ADQ的面积为y.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积;若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标;
(3)画出这个函数的图象;
(4)点P是否存在这样的位置,使△APB的面积是△ADQ的面积的
23
?若存在,求出BP的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知正方形ABCD的边长为12cm,E为CD边上一点,DE=5cm.以点A为中心,将△ADE按顺时针方向旋转得△ABF,则点E所经过的路径长为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边长为6,点M在边DC上,M,N两点关于对角线AC对称,若DM=2,则tan∠ADN=
3
2
3
2

查看答案和解析>>

同步练习册答案