精英家教网 > 初中数学 > 题目详情

已知抛物线y=a(x﹣m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D.若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线.

(1)如图1,求抛物线y=(x﹣2)2+1的伴随直线的表达式.
(2)如图2,若抛物线y=a(x﹣m)2+n(m>0)的伴随直线是y=x﹣3,伴随四边形的面积为12,求此抛物线的表达式.
(3)如图3,若抛物线y=a(x﹣m)2+n的伴随直线是y=﹣2x+b(b>0),且伴随四边形ABCD是矩形.用含b的代数式表示m、n的值.

(1)抛物线y=(x﹣2)2+1的伴随直线的表达式为 
(2)抛物线的表达式为
(3).                           

解析试题分析:(1)由题意可知:A(0,5),B(2,1),                     
设伴随直线AB的表达式为

解得
∴抛物线y=(x﹣2)2+1的伴随直线的表达式为.      
(2)令,得,∴A(0,-3),
由题意可知:顶点B(m,n)在伴随直线y=x﹣3上,
∴n=m-3,
∴B(m,m-3),                                         

∵点A、B关于原点O的对称点分别为C、D,
∴C(0,3) ,D(-m,-m+3),
过点B作轴于点E.
∵ m>0,

∵伴随四边形ABCD的面积为12,


,                                            
∴B(2,-1),
∴ 
把A(0,-3)代入中,
得:
∴抛物线的表达式为.                 

(3)∴伴随直线AB;y=﹣2x+b(b>0)与x轴、y轴分别交于点F (,0) ,A(0,b),
∴C(0,-b)
∵伴随四边形ABCD是矩形,
∴顶点B(m,n)在y轴右侧的直线y=﹣2x+b上,
∠ABC=90º,
∴B(m,-2m+b),
过点B作轴于点E.
∴E(0,-2m+b),
∴tan=tan,或证△ABE∽△BCE     

,                                       
.                           
考点:一次函数,二次函数,矩形
点评:本题考查一次函数,二次函数,矩形,解答本题的关键是用待定系数法求一次函数,二次函数的解析式子,熟悉矩形的性质,本题难度较大

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=ax2+bx+c(a≠0)与x轴交于不同的两点A(x1,0)和B(x2,0),与y轴的精英家教网正半轴交于点C.如果x1、x2是方程x2-x-6=0的两个根(x1<x2),且△ABC的面积为
152

(1)求此抛物线的解析式;
(2)求直线AC和BC的方程;
(3)如果P是线段AC上的一个动点(不与点A、C重合),过点P作直线y=m(m为常数),与直线BC交于点Q,则在x轴上是否存在点R,使得△PQR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-
140
x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E、F处要安装两盏警示灯,求这两盏灯的水平距离EF(精确到1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2(a>0)上有A、B两点,它们的横坐标分别为-1,2.如果△AOB(O是坐标原点)是直角三角形,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线经过点A(1,0)、B(2,-3)、C(0,4)三点.
(1)求此抛物线的解析式;
(2)如果点D在这条抛物线上,点D关于这条抛物线对称轴的对称点是点C,求点D的坐标.

查看答案和解析>>

同步练习册答案