精英家教网 > 初中数学 > 题目详情
x2+2
x3-x2-4x+4
=
A
x-2
+
B
x+2
+
C
x-1
,其中A、B、C为实数(常数),则A=
 
分析:先把等式右边通分,然后把分子合并同类项,再利用左右两式相等,找出等量关系,列出方程求解即可.
解答:解:把
A
x-2
+
B
x-2
+
C
x-1
通分得:
A(x+2)(x-1)+B(x-2)(x-1)+C(x-2)(x+2)
(x-2)(x+2)(x-1)

把分子合并同类项得:(A+B+C)x2+(A-3B)x+(-2A+2B-4C),
又∵
x2+2
x3-x2-4x+4
=
A
x-2
+
B
x+2
+
C
x-1

∴A+B+C=1,A-3B=0,-2A+2B-4C=2,
解三个方程得:C=-1,B=
1
2
,A=
3
2

∴A=
3
2
点评:本题考查了分式的加减法,分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.解决此题的关键是先把右边的等式通分,再把分子合并同类项,然后找出等量关系列方程求解.本题考查了
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面学习材料:
已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得:
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=0.5
m=0.5
,所以m=0.5
解法二:设2x3-x2+m=A(2x+1)(A为整式).由于上式为恒等式,为了方便计算,取x=-0.5,
得2×(-0.5)3-0.52+m=0,解得m=0.5
根据上面学习材料,解答下面问题:
已知多项式x4+mx3+nx-16有因式x-1和x-2,试用两种方法求m、n的值.
解法1:
解法2:

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读下面例题的解法,然后解答后面的问题.
例:若多项式2x3-x2+m分解因式的结果中有因式2x+1,求实数m的值.
解:设2x3-x2+m=(2x+1)•A   (A为整数)
    若2x3-x2+m=(2x+1)•A=0,则2x+1=0或A=0
    由2x+1=0得x=-
1
2

    则x=-
1
2
是方程2x3-x2+m=0的解
    所以2×(-
1
2
3-(-
1
2
2+m=0,即-
1
4
-
1
4
+m=0,所以m=
1
2

问题:
(1)若多项式x2+px-6分解因式的结果中有因式x-3,则实数P=
 

(2)若多项式x3+5x2+7x+q分解因式的结果中有因式x+1,求实数q的值;
(3)若多项式x4+mx3+nx-16分解因式的结果中有因式(x-1)和(x-2),求实数m、n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读第(1)题的解答过程,然后再解第(2)题.
(1)已知多项式2x3-x2+m有一个因式是2x+1,求m的值.
解法一:设2x3-x2+m=(2x+1)(x2+ax+b),
则:2x3-x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得
2a+1=-1
a+2b=0
b=m
,解得
a=-1
b=
1
2
m=
1
2
,∴m=
1
2

解法二:设2x3-x2+m=A•(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取x=-
1
2

(-
1
2
)3-(-
1
2
)2+m
=0,故 m=
1
2

(2)已知x4+mx3+nx-16有因式(x-1)和(x-2),求m、n的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

x2+2
x3-x2-4x+4
=
A
x-2
+
B
x+2
+
C
x-1
,其中A、B、C为实数(常数),则A=______.

查看答案和解析>>

同步练习册答案