精英家教网 > 初中数学 > 题目详情

三个数2、3、x的平均数是3,则x=________.

4
分析:利用平均数的公式,列出方程求解即可.
解答:由题意知,(2+3+x)÷3=3,
∴x=4,
故答案为4.
点评:本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读以下材料并填空.
平面上有n个点(n≥2),且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线?
(1)分析:当仅有两个点时,可连成1条直线;
当有3个点时,可连成3条直线;
当有4个点时,可连成6条直线;
当有5个点时,可连成10条直线;

(2)归纳:考察点的个数n和可连成直线的条数Sn,发现:
(3)推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2,即Sn=
n(n-1)
2

(4)结论:Sn=
n(n-1)
2

点的个数 可连成直线条数
2  l=S2=
2×1
2
3 3=S3=
3×2
2
4  6=S4=
4×3
2
5  10=S5=
5×4
2
n  Sn=
n(n-1)
2
试探究以下问题:
平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?
①分析:
当仅有3个点时,可作
 
个三角形;
当有4个点时,可作
 
个三角形;
当有5个点时,可作
 
个三角形;

②归纳:考察点的个数n和可作出的三角形的个数Sn,发现:
点的个数 可连成三角形个数
3  
4  
5  
n  
③推理:
 

取第一个点A有n种取法,
取第二个点B有(n-1)种取法,
取第三个点C有(n-2)种取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,故应除以6.
④结论:
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列说法,正确的个数是(  )
①经过平面上A、B、C三点可以作三条直线;
②三条直线两两相交,必有3个交点;
③过一点可以画无数条直线;
④线段AO与线段OA是同一条线段.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法,正确的个数是(  )
①经过平面上A、B、C三点可以作三条直线;
②三条直线两两相交,必有3个交点;
③过一点可以画无数条直线;
④线段AO与线段OA是同一条线段.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:2003年全国中考数学试题汇编《代数式》(03)(解析版) 题型:解答题

(2003•甘肃)阅读以下材料并填空.
平面上有n个点(n≥2),且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线?
(1)分析:当仅有两个点时,可连成1条直线;
当有3个点时,可连成3条直线;
当有4个点时,可连成6条直线;
当有5个点时,可连成10条直线;

(2)归纳:考察点的个数n和可连成直线的条数Sn,发现:
(3)推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2,即
(4)结论:
点的个数可连成直线条数
2 l=S2=
33=S3=
4 6=S4=
5 10=S5=
n Sn=
试探究以下问题:
平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?
①分析:
当仅有3个点时,可作______个三角形;
当有4个点时,可作______个三角形;
当有5个点时,可作______个三角形;

②归纳:考察点的个数n和可作出的三角形的个数Sn,发现:
点的个数可连成三角形个数
3 
4 
5 
n 
③推理:______
取第一个点A有n种取法,
取第二个点B有(n-1)种取法,
取第三个点C有(n-2)种取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,故应除以6.
④结论:______.

查看答案和解析>>

科目:初中数学 来源:2003年甘肃省中考数学试卷(2)(解析版) 题型:解答题

(2003•甘肃)阅读以下材料并填空.
平面上有n个点(n≥2),且任意三个点不在同一直线上,过这些点作直线,一共能作出多少条不同的直线?
(1)分析:当仅有两个点时,可连成1条直线;
当有3个点时,可连成3条直线;
当有4个点时,可连成6条直线;
当有5个点时,可连成10条直线;

(2)归纳:考察点的个数n和可连成直线的条数Sn,发现:
(3)推理:平面上有n个点,两点确定一条直线.取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2,即
(4)结论:
点的个数可连成直线条数
2 l=S2=
33=S3=
4 6=S4=
5 10=S5=
n Sn=
试探究以下问题:
平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?
①分析:
当仅有3个点时,可作______个三角形;
当有4个点时,可作______个三角形;
当有5个点时,可作______个三角形;

②归纳:考察点的个数n和可作出的三角形的个数Sn,发现:
点的个数可连成三角形个数
3 
4 
5 
n 
③推理:______
取第一个点A有n种取法,
取第二个点B有(n-1)种取法,
取第三个点C有(n-2)种取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,故应除以6.
④结论:______.

查看答案和解析>>

同步练习册答案