精英家教网 > 初中数学 > 题目详情
17、求n=1×3×5×7×…×1999的末三位数字.
分析:根据 1×3×5×…×1999,分解为四个奇数相乘,根据四个连续奇数的乘积除以8的余数是1,得出A=125×(8k+5)=1000k+625,从而解决问题.
解答:解:.
原式=A=1×3×5×…×1999,
则A=(1×3×5×7)•(9×11×13×15)•(17×19×21×23)•…•(123×125×127×129)•…(1993×1995×1997×1999),
则A=125×[(1×3×5×7)•(9×11×13×15)•(17×19×21×23)•…•(123×127×129)•…(1993×1995×1997×1999)],
下面证明两个引理:
引理1:125的奇数倍的末尾3位数只能是125、375、625、875中之一
证明:设k为奇数,则k除以8余数只有1,3,5,7.
则k=8m+i,其中i=1,3,5,7,
那么
k×125=k×(8m+i)=1000×m+125×i,
即k×125的末3位数字是125、375、625、875中之一
引理2:四个连续奇数的乘积除以8的余数是1
证明:设B=(2n+1) (2n+3) (2n+5) (2n+7)
=(4n^2+8n+3) (4n^2+24n+35)
当n=2m时,B≡1 mod(8)
当n=2m+1时,B≡1 mod(8)
综上,四个连续奇数的乘积除以8的余数是1
∴[(1×3×5×7)•(9×11×13×15)•(17×19×21×23)•…•(123×127×129)•…(1993×1995×1997×1999)]
≡1•1•…•(123×127×129)•…1mod(8),
≡5 mod(8),
∴A=125×(8k+5)=1000k+625,其中k为正整数.
综上1×3×5×…×1999的末尾3位数是625.
点评:此题主要考查了同余问题中连续奇数相乘尾数的确定方法,得出四个连续奇数的乘积除以8的余数是1是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠BAC=120°,∠B=30°,AD⊥AB,垂足为A,CD=1cm,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB是⊙O的直径,AC为弦,且平分∠BAD,AD⊥CD,垂足为D.
(1)求证:CD是⊙O切线;
(2)若⊙O的直径为4,AD=3,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:关于x的方程mx2-14x-7=0有两个实数根x1和x2,关于y的方程y2-2(n-1)y+n2-2n=0有两个实数根y1和y2,且-2≤y1<y2≤4.当
2
x1+x2
-
6
x1x2
+2(2y1-y22)+14=0时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、某建筑公司在2005年1月和2月将设备投资减少了39%,试求每个月平均投资减少的百分数(精确0.01%).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3).
(1)将原来的Rt△ABC绕点O顺时针旋转90°得到Rt△A1B1C1,试在图上画出Rt△A1B1C1的图形.
(2)求线段BC扫过的面积.
(3)求点A旋转到A1路径长.
精英家教网

查看答案和解析>>

同步练习册答案