【题目】如图,等边△AOB中点O是原点,点A在y轴上,点B的坐标是(2
,2),小明做一个数学实验,在x轴上取一动点C,以AC为一边画出等边△ACP,移动点C时,探究点P的位置变化情况.![]()
(1)如图,小明将点C移至x轴负半轴,在AC的右侧画出等边△ACP,并使得顶点P在第三象限时,连接BP,求证:△AOC≌△ABP;
(2)小明在x轴上移动点C,并在AC的右侧画出等边△ACP时,发现点P在某函数图象上,请求出点P所在函数图象的解析式.
(3)小明在x轴上移动点C点时,若在AC的左侧画出等边△ACP,点P会不会在某函数图象上?若会在某函数图象上,请直接写出该函数图象的解析式,若不在某函数图象上,请说明理由.
【答案】
(1)
证明:如图,
![]()
∵△AOB与△ACP都是等边三角形,
∴OA=AB,A=AP,CAP=∠OAB=60°.
∴∠CAP+∠PAO=∠OAB+∠PAO.
∴∠CAO=∠PAB.
在△AOC与△PAB中,
,
∴△AOC≌△ABP
(2)
解:由(1)可知,△AOC≌△ABP,
∴∠COA=∠PBA=90°,
∴点P在过点A且与AB垂直的直线上,
在等边△AOB中,B(2
,2),
∴AB=4,
当点C移动,使得P在y轴上时,
∵△PAB是直角三角形,∠PAB=60°,
∴PA=
=8,
∴P(0,﹣4),
设直线PB的解析式为y=kx﹣4,把B(2
,2)代入得到k=
,
∴点P所在函数图象的解析式为y=
x﹣4
(3)
会在函数的图象上,如图作B的对称点B′,连接AB′,OB′.
![]()
由(2)可知,P′B′⊥AB′,同法可得直线P′B′的解析式为t=﹣
x﹣4.
∴该函数图象的解析式为y=﹣
x﹣4
【解析】(1)利用等边三角形的性质,根据SAS根据解决问题.(2)首先证明点P在过点A且与AB垂直的直线上,求出特殊点(P在y轴上的点),利用待定系数法即可解决问题.(3)如图作B的对称点B′,连接AB′,OB′.由(2)可知,P′B′⊥AB′,同法可得直线P′B′的解析式为t=﹣
x﹣4.
【考点精析】通过灵活运用等边三角形的性质,掌握等边三角形的三个角都相等并且每个角都是60°即可以解答此题.
科目:初中数学 来源: 题型:
【题目】
如图
所示,在
中,
的垂直平分线交
于点
,交
于点
.
的垂直平分线交
于点
,交
于点
,连接
、
,求证:
的周长
;21.
如图
所示,在
中,若
,
,
的垂直平分线交
于点
,交
于点
.
的垂直平分线交
于点
,交
于点
,连接
、
,试判断
的形状,并证明你的结论.
如图
所示,在
中,若
,
的垂直平分线交
于点
,交
于点
,
的垂直平分线交
于点
,交
于点
,连接
、
,若
,
,求
的长.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,A(﹣2,0),C(2,2),过C作CB⊥x轴于B.
![]()
(1)如图1,△ABC的面积是 ;
(2)如图1,在y轴上找一点P,使得△ABP的面积与△ABC的面积相等,请直接写出P点坐标: ;
(3)如图2,若过B作BD∥AC交y轴于D,则∠BAC+∠ODB的度数为 度;
(4)如图3,BD∥AC,若AE、DE分别平分∠CAB,∠ODB,求∠AED的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,已知点
,
,
,a是
的立方根,方程
是关于x,y的二元一次方程,d为不等式组
的最大整数解.
求点A、B、C的坐标;
如图1,若D为y轴负半轴上的一个动点,当
时,
与
的平分线交于M点,求
的度数;
如图2,若D为y轴负半轴上的一个动点,连BD交x轴于点E,问是否存在点D,使
?若存在,请求出D的纵坐标
的取值范围;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出它关于原点的对称点称为一次变换,已知点A的坐标为(﹣2,0),把点A经过连续2014次这样的变换得到的点A2014的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0,其中正确的是(填编号) ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC. ![]()
(1)作出△ABC关于x轴对称的△A1B1C1 , (只画出图形).
(2)作出△ABC关于原点O成中心对称的△A2B2C2 , (只画出图形),写出B2和C2的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com