精英家教网 > 初中数学 > 题目详情
如图1所示,在等腰Rt△ABC中,点M是斜边AB中点,D是AB边上一动点,ED⊥CD于点D,EF⊥AB交AB于点F,且CD=ED.
(1)求证:AC=
2
DF;
(2)如图2所示,若ED⊥CD于点D,且ED=CD,点E在AC的左侧,其它条件不变,连接AE,求证:AE∥BC;
(3)在(2)中,若AD=
3
,则BC-AE=
6
6
.(直接写出结果即可,不书写解答过程)
分析:(1)连接CM,求出△DCM≌△EDF,推出DF=CM,根据勾股定理求出即可.
(2)过E作EF⊥AB交BA延长线于F,根据△DCM≌△EDF,推出EF=DM,DF=CM,CM=AM,求出DF=AM,求出AF=EF,求出∠FAE=∠B即可.
(3)过E作EN∥AB交BC于N,交CM于Q,求出BC-AE=CN,求出四边形AENB是平行四边形,四边形FEQM是矩形,求出AD=CQ=
3
,求出CQ=QN=
3
,在Rt△CQN中,由勾股定理求出CN即可.
解答:(1)证明:
连接CM,
∵△ACB是等腰直角三角形,M为AB中点,
∴AM=CM=BM,CM⊥AB,
∵EF⊥AB,CD⊥DE,
∴∠CMD=∠DFE=∠CDE=90°,
∴∠CDM+∠EDF=90°,∠CDM+∠DCM=90°,
∴∠DCM=∠EDF,
在△DCM和△EDF中
∠CMD=∠DFE
∠DCM=∠EDF
CD=DE

∴△DCM≌△EDF(AAS),
∴DF=CM,
∵△ACB中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
∵∠CMA=90°,AM=CM,由勾股定理得:AC=
2
CM,
∴AC=
2
DF.

(2)
证明:过E作EF⊥AB交BA延长线于F,
∵由(1)知:△DCM≌△EDF,
∴EF=DM,DF=CM,CM=AM,
∴DF=AM,
∴DF-AD=AM-AD,
∴AF=DM,
∴AF=EF,
∵∠F=90°,
∴∠FAE=∠FEA=45°,
∵∠B=45°,
∴∠FAE=∠B,
∴AE∥BC.

(3)解:BC-AE=
6

理由是:过E作EN∥AB交BC于N,交CM于Q,如图3,
∵AE∥BC,
∴四边形AENB是平行四边形,
∴AE=BN,
∴BC-AE=CN,
∵EF⊥AB,CM⊥AB,
∴CM∥EF,∠QMF=90°,
∵EQ∥AB,
∴四边形FEQM是矩形,
∴∠EQM=∠CQM=90°,EF=QM,
∵DM=EF,
∴QM=DM,
∵AM=CM,
∴AD=CQ=
3

∵∠ACB=90°,AC=BC,M为AB中点,
∴∠MCB=45°,
∴∠QNC=45°=∠QCN,
∴CQ=QN=
3

在Rt△CQN中,由勾股定理得:CN=
(
3
)2+(
3
)
2
=
6

即BC-AE=
6

故答案为:
6
点评:本题考查了矩形的性质和判定,等腰直角三角形性质,勾股定理,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1所示,在△ABC中,AB=AC=2,∠A=90°,O为BC的中点,动点E在BA边上自由移动,动点F在AC边上自由移动.
(1)点E,F的移动过程中,△OEF是否能成为∠EOF=45°的等腰三角形?若能,请指出△OEF为等腰三角形时动点E,F的位置;若不能,请说明理由;
(2)当∠EOF=45°时,设BE=x,CF=y,求y与x之间的函数解析式,写出x的取值范围;
(3)在满足(2)中的条件时,若以O为圆心的圆与AB相切(如图2),试探究直线EF与⊙O的位置关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丰台区一模)将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼成一个等腰三角形(不能有重叠和缝隙).
小明的做法是:如图1所示,在矩形ABCD中,分别取AD、AB、CD的中点P、E、F,并沿直线PE、PF剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2).
(1)在图3中画出另一种剪拼成等腰三角形的示意图;
(2)以矩形ABCD的顶点B为原点,BC所在直线为x轴建立平面直角坐标系(如图4),矩形ABCD剪拼后得到等腰三角形△PMN,点P在边AD上(不与点A、D重合),点M、N在x轴上(点M在N的左边).如果点D的坐标为(5,8),直线PM的解析式为y=kx+b,则所有满足条件的k的值为
8
5
4
3
或2
8
5
4
3
或2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1所示,点A为双曲线y=
kx
(x>0)
上一点,过点A作AD⊥y轴于D点,连接AO.
(1)若△ADO的面积为3,求反比例函数的解析式;
(2)如图2所示,在(1)的条件下,以A为直角顶点作等腰Rt△ABC,其中点B在x轴的负半轴,点C在x轴的正半轴,求OC2-OB2的值;
(3)如图3所示,在(1)的条件下,若B点的坐标为B(-1,0),双曲线上是否存在一点P,连接AO、PO,使得∠AOP=45°?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:新教材完全解读 九年级数学 下册(配北师大版新课标) 北师大版新课标 题型:044

如图(1)所示,在等腰梯形ABCD中,AD∥BC,AB=CD,有两条动直线l1l2从A点出发,且l1l2∥CD,l1以1 cm/s的速度沿AD的方向从左向右匀速运动,若干秒后,l2以一定的速度也沿AD的方向向右匀速运动,且l1l2同时与CD重合.设l1l2与梯形的边围成的图形周长为y cm,面积为S cm2l1运动的时间为t s,如图(2)所示的是y与t之间的函数关系的图象,结合图象回答下列问题.

(1)求l2的速度;

(2)求梯形ABCD的面积;

(3)求S与t之间的函数关系式.

查看答案和解析>>

同步练习册答案