精英家教网 > 初中数学 > 题目详情
(2004•本溪)已知,如图,抛物线y=ax2+bx+c经过点A(-1,0),B(0,-3),C(3,0 )三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,求sin∠BOD的值.

【答案】分析:(1)把点A(-1,0),B(0,-3),C(3,0 )三点的坐标代入函数解析式,利用待定系数法求解;
(2)求出抛物线的顶点坐标,根据正弦函数的定义求解.
解答:解:(1)由已知得解得
所以,抛物线的解析式为y=x2-2x-3.

(2)过D作DE⊥y轴于点E.
抛物线的解析式为y=x2-2x-3=(x-1)2-4,
则物线的顶点坐标为(1,-4),则OE=4,DE=1.
在直角△ODE中,根据勾股定理即可得到:OD===
则sin∠BOD==
点评:主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2004•本溪)已知,如图,抛物线y=ax2+bx+c经过点A(-1,0),B(0,-3),C(3,0 )三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,求sin∠BOD的值.

查看答案和解析>>

科目:初中数学 来源:2004年辽宁省部分市中考数学试卷(解析版) 题型:解答题

(2004•本溪)已知,如图,抛物线y=ax2+bx+c经过点A(-1,0),B(0,-3),C(3,0 )三点.
(1)求抛物线的解析式;
(2)若抛物线的顶点为D,求sin∠BOD的值.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(08)(解析版) 题型:填空题

(2004•本溪)已知,两圆半径分别为4cm和2cm,圆心距为10cm,则两圆的内公切线的长为    cm.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《圆》(07)(解析版) 题型:填空题

(2004•本溪)已知圆O的直径为6cm,如果直线l上的一点C到圆心O的距离为3cm,则直线l与圆O的位置关系是   

查看答案和解析>>

同步练习册答案