精英家教网 > 初中数学 > 题目详情
(2008•北京)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

【答案】分析:(1)依题意设直线BC的解析式为y=kx+3,把B点坐标代入解析式求出直线BC的表达式.然后又已知抛物线y=x2+bx+c过点B,C,代入求出解析式.
(2)由y=x2-4x+3求出点D,A的坐标.得出三角形OBC是等腰直角三角形求出∠OBC,CB的值.过A点作AE⊥BC于点E,求出BE,CE的值.证明△AEC∽△AFP求出PF可得点P在抛物线的对称轴,求出点P的坐标.
(3)本题要靠辅助线的帮助.作点A(1,0)关于y轴的对称点A',则A'(-1,0),求出A'C=AC,由勾股定理可得CD,A'D的值.得出△A'DC是等腰三角形后可推出∠OCA+∠OCD=45度.
解答:解:(1)∵y=kx沿y轴向上平移3个单位长度后经过y轴上的点C,
∴C(0,3).
设直线BC的解析式为y=kx+3.
∵B(3,0)在直线BC上,
∴3k+3=0.
解得k=-1.
∴直线BC的解析式为y=-x+3.(1分)
∵抛物线y=x2+bx+c过点B,C,

解得
∴抛物线的解析式为y=x2-4x+3.(2分)

(2)由y=x2-4x+3.
可得D(2,-1),A(1,0).
∴OB=3,OC=3,OA=1,AB=2.
可得△OBC是等腰直角三角形,
∴∠OBC=45°,CB=3
如图1,设抛物线对称轴与x轴交于点F,
∴AF=AB=1.
过点A作AE⊥BC于点E.
∴∠AEB=90度.
可得BE=AE=,CE=2
在△AEC与△AFP中,∠AEC=∠AFP=90°,∠ACE=∠APF,
∴△AEC∽△AFP.

解得PF=2.∵点P在抛物线的对称轴上,
∴点P的坐标为(2,2)或(2,-2).(5分)

(3)解法一:
如图2,作点A(1,0)关于y轴的对称点A',则A'(-1,0).
连接A'C,A'D,
可得A'C=AC=,∠OCA'=∠OCA.
由勾股定理可得CD2=20,A'D2=10.
又∵A'C2=10,
∴A'D2+A'C2=CD2
∴△A'DC是等腰直角三角形,∠CA'D=90°,
∴∠DCA'=45度.
∴∠OCA'+∠OCD=45度.
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度.(7分)
解法二:
如图3,连接BD.
同解法一可得CD=,AC=
在Rt△DBF中,∠DFB=90°,BF=DF=1,
∴DB=
在△CBD和△COA中,

∴△CBD∽△COA.
∴∠BCD=∠OCA.
∵∠OCB=45°,
∴∠OCA+∠OCD=45度.
即∠OCA与∠OCD两角和的度数为45度.(9分)
点评:本题设计得很精致,将几何与函数完美的结合在一起,对学生综合运用知识的能力要求较高,本题3问之间层层递进,后两问集中研究角度问题.
中等层次的学生能够做出第(1)问,中上层次的学生可能会作出第(2)问,但第(2)问中符合条件的P点有两个,此时学生易忽视其中某一个,成绩较好的学生才可能作出第(3)问,本题是拉开不同层次学生分数的一道好题.
本题考点:函数图形的平移、一次函数解析式的确定、二次函数解析式的确定、相似三角形、等腰直角三角形的判定及性质、勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源:2010年中考数学模拟试卷5 (解析版) 题型:解答题

(2008•北京)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

查看答案和解析>>

科目:初中数学 来源:2010年中考数学考前知识点回归+巩固 专题13 二次函数(解析版) 题型:解答题

(2008•北京)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

查看答案和解析>>

科目:初中数学 来源:2009年湖北省黄石市十六中中考数学模拟试卷(解析版) 题型:解答题

(2008•北京)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

查看答案和解析>>

科目:初中数学 来源:2008年北京市中考数学试卷(解析版) 题型:解答题

(2008•北京)在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.
(1)求直线BC及抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标;
(3)连接CD,求∠OCA与∠OCD两角和的度数.

查看答案和解析>>

同步练习册答案