精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,AB=AC,BD、CE分别是两腰上的高,且BD、CE相交于O.
(1)请你写出三类不同的正确的结论;
(2)设∠CBD=α,∠A=β,试找出α与β之间的一种关系等式,并给予适当的说明(友情提示:∠ABC=∠ACB).

解:(1)三类不同的正确结论是:
①△CEB≌△BDC;②∠ABD=∠ACE;③AE=AD;

(2)α与β之间的一种关系式是β=2α.
其理由是:
∵BD⊥AC,∴∠CBD+∠ACB=90°,
即α+∠ACB=90°.
∵AB=AC,
∴∠ABC=∠ACB,
∵∠A+∠ABC+∠ACB=180°,
∴β+2∠ACB=180°,
即β+2(90°-α)=180°,
∴β=2α.
分析:(1)利用等腰三角形的性质,可以证明图中有全等的三角形,进而可以得到相当的角和相等的线段.
(2)由于BD是等腰三角形腰上的高,所以α+∠ACB=90°,又等腰三角形中,∠ABC=∠ACB,∠A+∠ABC+∠ACB=180°,所以β+2∠ACB=180°,即β+2(90°-α)=180°,所以β=2α.
点评:本题重点考查了等腰三角形的性质,并且利用三角形的内角和定理和直角三角形的性质求解角与角之间的关系,题目典型,难度中等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案