精英家教网 > 初中数学 > 题目详情

如图,点B在y轴上,BA∥x轴,点A的坐标为(5.5,4),⊙A的半径为2.现有点P从点B出发沿射线BA运动.
(1)当点P在⊙A上时,请直接写出它的坐标;
(2)设点P的横坐标为x,连接OP,试探究射线OP与⊙A的位置关系,并说明理由.

解:(1)点P的坐标为(3.5,4)或(7.5,4);

(2)过点O作圆A的切线OM,切点为M,连接AM,则AM⊥OM,
由题意可知:OM与BA的交点为P,BP=x,
当点P在点A的左侧时,x<5.5
点A的坐标为(5.5,4),
AP=5.5-x,OB=4,
圆A的半径为2,
∴AM=2,BA∥x轴,
∴∠OBP=90°,
∴∠AMP=∠OBP
∠APM=∠OPB,
∴△OBP∽△AMP,


得OP=11-2x,Rt△OBP中,(11-2x)2=42+x2
解得:x=3或x=(舍去)
当点P在点A的右侧时,x>5.5,
同理可解得x=3(舍去)或x=
∴当x=3或时,直线OP与圆A相切;
当0<x<3或x>时相离;
当3<x<直线与圆相交.
分析:(1)根据圆的半径和点A的坐标直接写出点P的坐标即可;
(2)过点O作圆A的切线OM,切点为M,连接AM,则AM⊥OM,利用相似三角形的性质求得圆心与直线的距离,然后根据圆心到直线的距离判断点与直线的关系即可.
点评:本题主要考查了切线的判定,通过作辅助线转化为解直角三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图,点M在x轴上,以点M为圆心,2.5长为半径的圆交y轴于A、B两点,交x轴于C(精英家教网x1,0)、D(x2,0)两点,(x1<x2),x1、x2是方程x(2x+1)=(x+2)2的两根.
(1)求点C、D及点M的坐标;
(2)若直线y=kx+b切⊙M于点A,交x轴于P,求PA的长;
(3)⊙M上是否存在这样的点Q,使点Q、A、C三点构成的三角形与△AOC相似?若存在,请求出点的坐标,并求出过A、C、Q三点的抛物线的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.若函数y=
k
x
(x<0)的图象过C点,则k的值是(  )
A、±4
B、-4
C、-2
5
D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C精英家教网的直线y=2x+b交x轴于D,且⊙P的半径为
5
,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,精英家教网-1)
(1)求经过B、E、C三点的二次函数的解析式;
(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;
(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点I在x轴上,以I为圆心、r为半径的半圆I与x轴相交于点A、B,与y轴相精英家教网交于点D,顺次连接I、D、B三点可以组成等边三角形.过A、B两点的抛物线y=ax2+bx+c的顶点P也在半圆I上.
(1)证明:无论半径r取何值时,点P都在某一个正比例函数的图象上.
(2)已知两点M(0,-1)、N(1、0),且射线MN与抛物线y=ax2+bx+c有两个不同的交点,请确定r的取值范围.
(3)请简要描述符合本题所有条件的抛物线的特征.

查看答案和解析>>

同步练习册答案